平行四边形的面积教学反思

以下是小编帮大家整理的平行四边形的面积教学反思,本文共19篇,欢迎大家收藏分享。

平行四边形的面积教学反思

平行四边形面积是在学生学习了长方形面积和认识了平行四边形,会画平行四边形的底和对应的高的基础上教学的。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。这节课,我的反思如下:

一、创设情境,激发探究欲望

本节课中,我创造性地利用教材,对教材内容作出了丰富又恰当的补充。通过出示教具:一个长方形框架。接着演示把长方形框,拉成一个平行四边形的过程。引出新课,增加了学习的趣味性,激发了学生探究知识的强烈欲望,让学生们在兴趣的引导下,积极投入到学习活动中来。 将新旧知识紧密结合在一起,引导学生在观察、比较中发现问题,从而自然引入到面积的探究中。

二、重视学生的动手实践、自主探索和合作学习

新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。学生通过动手操作,运用剪、割、移、补等方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,再充分利用多媒体课件演示,为学生架起由具体到抽象的桥梁,更形象、更直观使学生清楚的看到平行四边形到长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。最后,得出结论平行四边形面积等于底乘以高。

三、注重基本活动经验的积累和转化思想的渗透

“转化”方法是研究和解决数学问题的一种有效的思考方法。平行四边形的'面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。通过本节课的学习,让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,能够为推导三角形、梯形面积的计算公式提供方法的迁移。本节课教学的重要内容,就是如何把平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在这里,学生不仅掌握了平行四边形的面积公式,更体验了推导过程及领悟了数学思想方法--转化思想。由于学生自己探索解决了问题,因此学生体验到成功的喜悦,不仅加深了转化思想的认识,而且增强了他们运用转化思想解决新问题的信心。

四、注重练习的层次性,提高学生的思维能力

1、本课练习中,第一题直接求平行四边形面积,检验学生是否达到运用公式。

2、第二题进一步体会平行四边形面积计算公式的推导过程,学生关注测量这个平行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这里强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深,为日后学习三角形、梯形等平面图形的面积计算奠定了基础。

3、在基本练习之后,让学生回头探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的思维能力,前后呼应。

4、拓展题:如果一个平行四边形的面积是24,它的底和高分别是多少?经过此题,学生体会到决定图形面积大小的因素不是图形的形状,而是图形的底与高的长度,从而进一步认识计算方法的本质特征。

教学中的遗憾之处:

要深度钻研教材,了解学生,提高掌控课堂的能力。

在出示主视图:如何求这块空地的面积?(怎么样计算平行四边形的面积?)时,将这个问题直接抛向学生,学生独立思考。可能是上一节课,刚刚学习通过割补法把不规则的图形转化成已经学习过的图形。课件出示的情景图又不是格子图,学生直接就想到了用割补法把平行四边形转化长方形,表述的很完整,我就顺势直接先讲平移转化的方法。这里有点遗憾,没有让学生经历先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想---平行四边形的面积是可能是底乘以高,再引导学生想办法验证自己的猜想,并由此转入下一个问题的教学。虽然到最后提问:“还有哪些方法可以知道平行四边形的面积呢?”回到了数格子的方法,再一次验证了结论,但此时再用数格子的方法意义不大,作用甚微。

教学是一门有着缺憾的艺术,在今后的教学中,我会针对自己在课堂中的不足,多下些功夫,积极主动向有经验的同事学习,努力提高自己的各方面能力。

平行四边形面积教学反思

(一)创设生活情境,激发探究欲望

小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学片断中,教师带领学生进行实地考察幼儿园建筑工地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

(二)重视学生的自主探索和合作学习

动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题――把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的.探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到“灵感”的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。

(三)培养学生的问题意识

问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。

(四)初步体验科学探究的方法

科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观这个片断的教学过程,初步体现了“提出问题――大胆猜测――反复验证――总结规律――灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。而现有的教材较多地呈现了知识的结论,很少反映知识的产生过程。因此,我在进行教学时对教材进行了重组,在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。

“平形四边形的面积”是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。

一、注重数学专业思想方法的渗透。

我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。

二、注重学生数学思维的发展。

在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。

三、注重了师生互动、生生互动。

在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的'这些问题,不断地把课堂引上了师生互动,生生互动的高潮。整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答

四、练习的设计,由浅入深,环环相扣。

一是让学生进行两个平行四边形面积的计算,并让学生通过画一画加深学生对数学转化思想的印象。

二是让学生计算文字描述的平行四边形的面积。然后让学生画出平行四边形,展示不同的平行四边形,得出等底等高的平行四边形面积都相等。

整堂课,都让学生在思考、交流、思维碰撞中渡过,动静结合,有些课堂发言很积极的同学并不一定数学成绩很好,有些数学课上很少发言的学生却有很好的数学成绩。课堂需要学生积极发言,然而更重要是静静地积极地思考。

《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。

教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:

1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。

2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。

3、比较等底等高的平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底X高得出面积。

4、补充其他转化策略,明确平行四边形面积=底X高。

5、练习巩固。

先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。

平行四边形面积教学反思

孩子们已经认识了三角形、平行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了平行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,要体验图形平移、旋转等变化……感觉任务非常艰巨。

平行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。

邻边相乘(长×宽)的面积计算方法是学生掌握的已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的`方法,将一个平行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“平行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。

经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的改造,沟通“教”与“学”的通道。

在学生坚信这个平行四边形面积=底×邻边=9×6=54平方厘米时,呈现格子图。于是学生将平行四边形的面积锁定在(8×4)32平方厘米和(10×4)40平方厘米之间。这一过程不仅学生认识到长方形面积和平行四边形面积的差异,也让学生在面积的度量层面沟通了平行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到平行四边形的面积计算公式就水到渠成了。

新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。现就上课时和课后的感受谈几点体会:1.注重数学专业思想方法的渗透

在数学教学中,要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?正方形的呢?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。

2﹑本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的`过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所觉。

3.分层练习,突破重点难点

巩固练习阶段是帮助学生掌握新知,形成技能、发展智力、培养能力的重要手段。心理实验证明:学生经过近三十分钟的紧张学习之后,注意力已经度过了最佳时期。此时,学生易疲劳,学习兴趣容易降低,差生的表现尤为明显。为了保持较好的学习状态,提高学生的练习兴趣,我除了注意练习的目的性、典型性、层次性和针对性以外,还特别注意在巩固新知识的基础上进行加强练习。选择合适的底和高计算面积、已知面积求高(逆向思维训练)、等底等高图形面积计算。

在学生初步掌握平行四边形面积计算公式的基础上,又设计了一组选择练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。这样,既体现了知识的有序性,又保证了重点,分散难点,便于学生理解与掌握,从而达到学习目标的全面落实。学生兴趣浓厚,攻克一个个难关,意犹未尽。,学生练习中错误率低,取得了满意的效果。时间把握得不够,最后两道有针对性的练习没有得到训练,从而没有很好的达到巩固新知的作用。

4.我的遗憾

本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了,学生对平行四边形面积推导过程茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。

虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。

教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

教学片断中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

(一)创设生活情境,激发探究欲望

小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们知道,只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科内容的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。

上述教学片断中,教师带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

(二)重视学生的自主探索和合作学习

动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题-把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理。

本节课是以高效课堂教学模式为依据的小组合作学习,打破了传统教学模式,真正让学生成了学习的主人,课堂上做到了让学生全员参与,全程参与,剪、拼、观察,思考,最后得出结论,尽力使学生在单位时间内较好地探索出平行四边形的面积,体验整个公式的推导过程,并会应用,课堂上做到手、眼、口、脑全到,努力使课堂达到“轻负、优质、高效”。

主要教学环节

1、活动单引领。整节课的学习,讨论、交流、展示都以活动单为引领,设计问题明确,有层次,有梯度。从一开始的“温故知新”设计不同图形的数格子是为本节课学习习近平行四边形的面积做铺垫,给学生渗透转化的思想。交流合作时,给学生提出明确的合作要求:两人合作,先剪拼再观察思考,填写活动单,交流讨论,得出结论,小组展示,这样的程序让学生在讨论交流时有依托而不是盲目地讨论,防止讨论交流热闹而合作流于形式。

当堂检测也是有一定的层次。先是根据公式计算,再次是告诉两个底一个高,让学生判断用哪一个底,目的是让学生明白底和高必须是对应的,然后是实际应用,这样有梯度的设计练习,分散了难点。让学生学习有了坡度,从而获得成就感,最后还为学有余力的学生设计了拓展延伸,使各个层次的学生都有收获。

2、学习结果当堂展示。尤其是合作交流和巩固练习部分。这样更有利于发展学生的个性,培养学生的思维,锻炼思维和语言的条理性,而且有利于发现学生的闪光点,培养学生间的团队合作意识。比如在合作交流展示时,要两人合作,语言表达能力较好条理清晰的学生负责汇报,擅长动手操作的学生展示剪拼成长方形的过程,这样有利于发挥学生的特长,他们的学习积极性就会有更大的提高。的在小组合议为什么沿高剪开时,学生不一定能回答准确,但通过小组合议以及和其它组的质疑对抗中,问题就会迎刃而解,学生也会有一种通过讨论后,自己得出结论的喜悦,从而增强学习兴趣。

3、汇报模式有约定俗成的语言,目的是让学生学会倾听,注意力集中,眼手脑全到,才能使课堂更有效,汇报时学生必须要有呼应,一是对知识的理解,二是对汇报学生的尊重。

当然高效课堂这种模式还够熟练,还要进一步完善,尤其是小组建设方面,很多的细节还要在教学实践中进一步细化和加强。

这节课我还有很多不足之处:

1、对学生汇报没有及时跟进评价。

2、对学困生关注不够。

3、时间把握不够准确,还需进一步努力改进。

《平行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与平行四边形之间的特殊关系,并提出大胆的猜想。通过动手操作验证的方法推导出平行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的.形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。

一、导入环节中的得与失

得:复习长方形的面积为新知探究做好铺垫。

失:从复习旧知到情境导入衔接不够自然,略显牵强。

二、探究新知环节中的得与失

得:先用数方格得方法探究平行四边形的面积时,处理的较为细致。动手操作时,也让学生提前准备了学具,初步回忆了其特点,充分发挥学生主体性。

失:在探究环节,不能很好的利用学生的错误资源,来让学生纠其错误,达到巩固新知的效果,在学生说出其变化时引导不到位,导致学生得出平行四边形面积公式有些被动。

三、巩固练习环节中的得与失

得:最后一道题设计较好,让学生知道算平行四边形的面积时要选择高与相应的底。

失:时间安排的原因,处理的过于粗略。

之后的教学中,备课时,不仅要在备教材这下功夫,也要在备学生这多努力,多预设几种学生可能出现的情况,应该如何应对,做到全面把控课堂。

《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。由此我设计的学习目标是:

1、通过观察、动手操作、比较、讨论思考,探索并掌握平行四边形面积计算公式,能正确应用公式计算平行四边形的面积。

2、能灵活、准确地应用平行四边形的面积计算公式解决简单实际问题。

3、在探索平行四边形面积公式的过程中,初步感受转化的数学思想。我主要从我的教学过程中反思这节课成功的经验及失败的教训。

一、导入示标

本节课我以复习长方形的面积导入,通过拉一拉把长方形变成平行四边形,学生发现不会求这类图形的面积,从而激起学生的好奇心,提高学生的兴趣,本节课有了一个好的开始,但是接下来我没有向学生明确说明今天的学习目标,虽然有了好奇心,但不太清楚这节课主要做什么,是我考虑不周,在今后的教学中注意这个问题,目标就是学习的方向,干任何事首先都要明确目标。

二、学习过程

我设计的学习过程让学生提出猜想—验证猜想(小组讨论)——推导出结论—练习—总结—布置作业,但我在实施这个流程时发现几个问题,第一、我让学生在预习再猜想学生很多答案都是固定的,有的直接照书本上说。没有达到预期的效果,第二讲课的速度跟出示不一致,有时候讲的多但出示,有时候出示但没有讲那一方面的知识。第三、讲课中语言过于啰嗦、重复。第四、每个环节与每个环节之间的过渡语说的不太自然,太生硬有的甚至没有过渡语,直接跳到下一个环节。第五、练习题没有根据学生发展顺序及知识的难易循序渐进,先出示的问题比较难,后出示的问题相对容易。学生在回答第一个问题的时候有些措手不及。通过分析出现的这些问题原因,我觉得最重要的是课前没有充分备课,没有充分备学生。没有对这节课的教案熟悉,与思路都是分家的,出示与讲课的速度不统一,导致效果不一致。经过本节课的教学我觉得在上每一节课前不仅对每一个知识点熟记于心,更应该对如何向学生展现这是知识点熟记于心。

三、总结评价

在整节课的教学中对学生的评价语少,鼓励性语言更少,小孩子回答问题后都需要老师的肯定,这样会大大提高学生下一次回答的勇气。

四、我的遗憾

课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

“平行四边形的面积”的教学反思 “平行四边形的面积”一课是 “多边形的面积”这一单元第一小节的内容。根据新课标的要求及教材的知识特点,并结合我班学生的具体情况,我制定了以下的教学目标:

1、了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

2、通过操作、观察、讨论、比较活动,让学生初步利用图形转化来推导平行四边形面积的计算方法,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

3、通过活动,激发学习兴趣,使学生在数学活动中获得成功的体验,建立自信心、培养团结协作的精神,感受数学与生活的密切联系。

学生先前已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力还不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。本节课中,我采取多种手段引导学生积极参与学习过程。本节课教法上最大的特点是让学生动手操作,把静态知识转化为动态,把抽象数学知识变为具体可操作的规律性知识,指导学生理论联系实际,开展讨论,

使他们自主、快乐地解决问题。另外,我还力图体现学生学法的转变:从被动接受学习变为在自主、探究合作中学习,让学生亲身体验知识的形成过程,促使学生思维的发展,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

一、创设有效的问题情景

在课的开始就以我校要建设两块绿地,一个是长方形,一个是平行四边形,现在要将种植任务平均分给五年级的四个班,如果让你来分配任务,你打算先解决什么问题?这一生活中的实际问题引出平行四边形面积的计算问题。让学生带着浓厚的兴趣开展新知的探究。这样的设计有助于学生感受数学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,提高学生理解数学并运用数学解决问题的能力。

二、注重学生数学思维的发展

在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生将平行四边形转化成长方形,在学生体会转化这一数学思想方法的同时,引导学生进一步观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生易于得出结论。

三、注重优化练习,拓展思维

练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,我注重学练结合,习题的设计既有梯度又注重变式,同时利用教具和多媒体课件进行直观演示,帮助学生理解和掌握。

本节课的不足之处:

1、在公式的推导环节的教学中应该再强调一下转化后的长方形的长和宽与原来平行四边形的底和高之的关系,从而便于那些学习能力稍差的学生更好地理解平行四边形面积公式的推导过程。

2、教师的语言应该再精炼一些,避免重复自己的问话或是重复学生的回答,从而可以节省一部分时间。

3、在练习中应再多给学生留一些思考的时间,尽量使每个学生都能有正确解题的体验,增强自信心。

在今后的教学中我会注意以上问题,不断改进,使我的课堂教学更加精彩。

《平行四边形的面积》是人教版五年级上册第五单元的内容,通过教学感触很多,我总结了以下几点。

一、要注重数学专业思想方法的渗透。

我们在教学中一贯强调,“授人以鱼,不如授人以渔”。在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。因此,要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。

在这节课中,我开始引入情境,引导学生如何解决问题,那就是求面积,使学生一下子就明白了,面积测量的方法有两种,这两种方法不仅适用于长方形,同样还适用于其它的平面图形。这不仅为学生接下来研究平行四边形的面积,提供了方法,还为学生的研究提供了思路。

二、要注重学生数学思维的发展

数学教学的核心是促进学生思维的发展。教学中,要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。

在我这节课中,我设计了猜一猜、剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

三、要注重师生互动、生生互动

整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。所谓“互动”就是在课堂教学中师生要有交往,生生要有交往,不能是教师的“满堂灌”、“满堂问”、“满堂练”。师生应该互有问答,学生与学生之间要互有问答。在这节课中,教师始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。

例如:验证完猜想后,师问:两种猜想,两个结果,到底哪一个才是正确的,哪一个才是我们要的间接测量的先进方法呢?还有当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。

反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

一、创设有效的问题情景

在课的开始就以我校要建设两块绿地,一个是长方形,一个是平行四边形,现在要将种植任务平均分给五年级的四个班,如果让你来分配任务,你打算先解决什么问题?这一生活中的实际问题引出平行四边形面积的计算问题。让学生带着浓厚的兴趣开展新知的探究。这样的设计有助于学生感受数学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,提高学生理解数学并运用数学解决问题的能力。

二、注重学生数学思维的发展

在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生将平行四边形转化成长方形,在学生体会转化这一数学思想方法的同时,引导学生进一步观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生易于得出结论。

三、注重优化练习,拓展思维

练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,我注重学练结合,习题的设计既有梯度又注重变式,同时利用教具和多媒体课件进行直观演示,帮助学生理解和掌握。

本节课的不足之处:

1、在公式的推导环节的教学中应该再强调一下转化后的长方形的长和宽与原来平行四边形的底和高之的关系,从而便于那些学习能力稍差的学生更好地理解平行四边形面积公式的推导过程。

2、教师的语言应该再精炼一些,避免重复自己的问话或是重复学生的回答,从而可以节省一部分时间。

3、在练习中应再多给学生留一些思考的时间,尽量使每个学生都能有正确解题的体验,增强自信心。

在今后的教学中我会注意以上问题,不断改进,使我的课堂教学更加精彩。

《平行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解平行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:

优点:

一、注重学生的课前预习工作,让学生做好了学习新知的准备。

在教学前,我先让学生预习《平行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握平行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(平行四边形卡纸、剪刀)。

二、注重课堂上学生的自主学习,让学生成为学习新知的主人。

在探究平行四边形的面积计算方法时,我引导学生思考“如何将平行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原平行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的提高。由此,对平行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。

三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。

在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。

不足与相应措施:

学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。

为了能更好地使用使用信息技术,有效地完成教学目标,本课时充分利用学生计算长方形面积的经验,引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程。具体如下:

一、复习引入

复习长方形的周长和面积,目的是唤醒学生已有的知识储备,为后续的学习奏响了前奏。

二、探究新知

“数学教学是数学活动的教学,是师生之间、学生之间和生本之间交往互动、共同发展的过程。”复习长方形的面积后,让学生试算平行四边形的面积,由此产生了正迁移和负迁移的两种解法,教师先用数方格的方法进行验证,得出了邻边乘邻边是错误的,正确的方法是底乘高。然后利用多媒体课件根据平行四边形容易变形的特点,把平行四边形拉成了长方形,让学生清楚地看到邻边乘邻边计算的是长方形的面积而不是平行四边形的面积。再让学生利用手中的学具验证是不是所有的平行四边形的面积都可以用底×高来计算,在这个过程中,要求同桌讨论,确实不懂的请教书本,再验证。最后学生展示不同形状的平行四边形面积都可以用底×高来计算,最后,教师利用课件演示操作过程,并进行总结:用剪拼的方法把平行四边形转化成已学过的长方形后,面积不变,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积等于长×宽,所以平行四边形的面积等于底×高。教师与学生共同探讨、反思、和谐共进。生与生之间,思想相互碰撞、观点相互交锋,提高了交流、沟通的能力。同时,也使知识在对话中生成。学生与课本对话,使学生的主体意识与课本之间互相交流、双向互动,“静态”的教材在学生创造性地延伸拓展中,焕发出更加鲜活的生命力。整个过程中,师生之间、生生之间、生本之间的对话得到了充分的展现,谱写了一首旋律优美的主题曲。

三、拓展应用

整个习题设计部分,虽然题量不多,但却涵盖了本节课的所有知识点。第一题,通过学生的分析,同学们懂得计算平行四边形面积必须是相对应的底乘以高。而第二题,由一个简单的问题,让学生通过画图、观察、师生对话,进行逻辑推理,使学生明白等底等高的平行四边形的面积相等,面积相等的平行四边形不一定等底等高。

四、师生总结

由一句“把你最高兴的说出来和大家分享一下”,师生互动,概括出本节课渗透的思想方法:在数学学习中,转化是一种很好的方法。

当然,这节课还存在许多不足,如:1、没有好好利用学生生成的资源。2、老师的评价语言过于简单化等。恳请各位领导和同仁提出宝贵意见。谢谢!

《平行四边形的面积》是北师大版五年级上册第四单元第三课时的内容。这在学生已经会在格子图中求出图形的面积,已经认识了平行四边形的底和高,并会找、会画相对应的底和高的基础上进行教学的,基于学生的知识起点和学生的学情分析,我有了本课的教学设计。我追求的是让教学贴着学生的思维前行,让学生在直观操作中学习数学。今天,我有幸将这课的设计在早毓小学展示。现静下心来反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

一、创设贴近学生生活的学习情境,激发学生探究的欲望。

首先,我对教科书中的主情境加以修改,以贴近学生的生活情景导入,利用课件出现学校操场旁有一块长方形的空地要绿化,请同学们算出绿化的面积,随即从这个长方形中出现一块没有任何数据的平行四边形地,再引导学生将这个平行四边形与长方形比一比,再估测这个平行四边形的面积大约有多少?以培养学生估测意识。

继而询问学生“有什么办法能比较准确地算出这个平行四边形的面积”。学生根据已有的学习经验马上想到用数格子和计算的的方法。然后围绕“有什么办法能比较准确算出这个平行四边形的面积?”组织学生动手探究。这样既复习了旧有知识,又为学习新知识做铺垫,同时也比较自然地引入新内容。

二、注重“以生为主,教师为辅”,让学生真正成为学习的主人。

1.《新课程标准》明确指出:“有效地数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”动手实践是学生学习数学的主要方式之一。它有利于让学生参与知识的形成过程,促进学生对抽象数学知识的理解,而且培养了学生的思维能力、创新能力和合作精神。因此,在本课的教学设计中,我利用学生好动、好奇的心理,将这块平行四边形做成卡片模型,并提供了一些探究的材料和工具。让学生根据自己的学习经验,自主选用喜欢的方法来验证自己的猜想。为学生创造了一个观察、操作的机会,以充分发挥学生的学习主动性,学生在兴趣盎然的操作中,把抽象的数学知识变为活生生的的动作,自然而然的让学生从“要我学”变成“我要学”。有的学生根据自己的学习经验想到了数格子的方法;能力较好的学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。

2.“学生是学习的主人,把课堂的时间交还给学习的主人”这是新课标在提倡的重点。是的,学生学习,教师是不能替代的,只有让学生在动手操作和交流地碰撞中。学生才能真正理解和掌握这种抽象的公式。因此,在展示学生的活动方法时,我有意识地先展示数格子的方法,当学生介绍完数法后,有的学生马上发现,先移后数的方法更快的得到这个平行四边形的面积,其实,在这里,学生已初步体验的“剪”和“拼”方法了。所以我紧接着展示学生的剪拼法。在学生的汇报中,我大胆放手,让学生根据自己的学习经验进行汇报,充分发挥学生的想象力,同时培养学生的创新意识。

三、注重数学思想方法的渗透,让所积累的经验为新知服务。

“授人以鱼,不如授人以渔”,这句话不错,教给他们知识,不如教给他们学习的方法。所以,在“平行四边形的面积”这一课的教学中,我不仅仅是让学生掌握平行四边形面积的计算公式,更重要的是让学生在活动中积累基本的活动经验,让他们在经验的积累中感受、理解、掌握数学中“转化”的思想方法,为今后学习其他图形的面积奠定基础。如在学生上台汇报:将平行四边形转变成长方形时,我适时讲解“像他们这样,把没学过的知识变成已学过的知识,从而解决问题,这就是数学中的“转化”思想。并提醒学生,在今后的学习中,我们也可以像他们这样,利用转化的的思想,将没学过的知识转化为已学过的知识来解决。

四、巧设课堂练习,培养学生数学思考的能力。

学生的思考能力是有差异的,所以我在整体把握教学内容的基础上,设计了梯度练习。首先是基础性的练习,让学生利用所探究出来的公式求平行四边形的面积;接着是提高性的练习,既设计多余信息的练习,让学生的思考力得以生长。当学生看懂了平行四边形可以转化为长方形来思考,真正理解了“底乘高的原理时,我又创设一个反例练习,既在黑板上将一个活动的长方形框架拉成平行四边形,然后问学生:“长方形的面积和平行四边形的面积相等吗?”这时,学生受思维定势的影响,都一致认为“相等”。当我利用课件展示两个图形的平面图时,一部分学生根据已有的学习经验(即将平行四边形右边斜出的部分剪下,平移到左边拼成长方形,)而改变了意见。此时,我质疑学生:“为什么刚才把平行四边形转化成长方形,它们的面积相等。而现在把长方形的框架拉成平行四边形时,它们的面积却不相等呢?”然后再利用活动框架让学生直观地了解到:当我们把长方形框架拉成拉成平行四边形时,它的面积会越来越小,是因为平行四边形的高越来越短的关系。从而让学生理解“等积变形”的转化与“变与不变”之间的区别。最后我再通过两题判断题让学生充分理解,平行四边形的面积不仅与它的高有着密切关系,同时也与它的底有着密切的关系。

五、遗憾与心得

教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾。

(1)由于是送课下乡的活动,我对该班学生的学习情况了解不够。因而在学生的动手探究时,多数学生对学习记录卡的填写不熟悉。由此在这个环节花掉的时间超过我预设时间近十分钟。然而让我欣喜的是在学生交流汇报的环节,一部分学生的思维活跃,语言表达能力非常好,从而凸显出本课设计的精彩之处,以致于让听课老师不会因超时而不耐烦。同时也让我意识到,在今后的教学中,应对学习卡的设计慎之又慎。

(2)阶段性小结的重要性。适当的课堂小结可以帮助学生理清知识结构,掌握内在联系,对促进学生构建自己的知识体系,有很大的帮助。因此,在学生获取一个新的知识点后,教师应及时做个阶段性的小结。

幸运的我,相信在陈宏瑜名师的指导下,在我们团队的磨课中,会不断地改进,不断地进步,不断地创新,我们的课堂也将会更加精彩。

本节课的教学内容属于公式推导课。教学重点是推导出平行四边形的面积计算公式,并能正确运用。教学难点是把平行四边形转化成学过的图形,通过找关系推导出平行四边形的面积公式。课前我一直在思考,如何用新课程的理念去教这一内容呢?于是我对这节课进行了大胆的尝试。整个推导过程较为抽象,学生掌握起来有相当的难度,所以根据学生的认知规律,本节课充分发挥学生的主动性,在教师的引导下,让每一个学生亲自动手操作,把平行四边形转化为长方形,通过观察、比较、分析、概括、讨论的方法,自己去发现平行四边形与长方形之间的关系,然后一步步地推导出平行四边形面积的计算公式。现针对实际课堂教学效果进行自我反思。

一、注重学法的指导,将转化的思想进行了有效的渗透,让学生学会用学过的知识来解决现有的问题。

新授课中,找准知识的生长点是很重要的。长方形面积的计算是平行四边形面积计算的生长点,是认知前提。因此,开始伊始,先复习长方形面积的计算方法,让学生实现知识的迁移,为推导平行四边形的面积计算公式作铺垫。在比较长方形和平行四边形两个图形的大小这一教学环节中,学生用了数方格的方法去比较它们面积的大小。学生上台汇报时充分利用电脑演示,突出怎样去数方格(先数满格,不满一格的按半格计算,两个半格算一格)为以后学习不规则图形面积埋下伏笔。然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有了非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经会算面积的图形来研究。我们可以将数学方法传递给学生,而数学眼光却无法传递,故应着重把握好对数学思想的教学,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。

二、让孩子亲身体验,增长自身的经验,体现学生的主体性

学生是数学学习的主人,在教学中给学生提供了充分的从事数学活动的机会,先让学生大胆猜测,再通过同桌合作剪一剪,拼一拼,互相交流总结,验证猜想。学生在自主探索、动手操作、合作交流的过程中真正理解和掌握了基本的数学知识与技能,数学思想和方法,学生的主体性得以体现。推导出平行四边形的面积计算公式,完成了本节课的知识目标教学。

三、注重学生数学思维的发展和学习水平的深化

通过有梯度的练习设计,提高学生对平行四边形面积计算的掌握水平。以开放练习的形式,出示①课件出示平行四边形,使学生关注这个平行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。本课的教学中平行四边形底和高对应关系的寻找是很重要的一个环节,这就为日后学习三角形、梯形等平面图形的面积计算奠定了基础。②讨论:下列两个平行四边形的面积大小相等吗?通过讨论、交流,使学生明白等底等高的平行四边形的面积相等。③讨论:将一个长方形框架拉成一个平行四边形,什么变了?什么没变?为什么?通过这些练习进一步丰富了学生的认识,拓宽了学生的思维,有效的提高了课堂教学的效率。

四、增强自身的应变能力

有效的把握学生课堂生成,灵活应对课堂突发的情况,是我今后教学中应注重的。在课堂教学中,教师的应变能力十分重要,它对提高教学效果和完成教学任务具有重要的意义。如果教师具有较好的应变能力,在教学过程中就能从容不迫,随机应变组织教学,即使课堂上出现意想不到的问题,也能临危不乱,坦然处之,妥善地加于解决。如果缺乏一定的应变能力,一旦课堂上出现意想不到的问题,就会乱了方寸,必然影响教学效果,完成不了教学任务。因此,作为教师要具备一定的应变能力,上课的时候就能灵活变通,这样我们的课堂教学就一定会很精彩。

教学目标:

1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。

2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想。

教学重点:探索并掌握平行四边形的面积计算公式。

教学难点:理解平行四边形的面积计算公式的推导过程。

教具学具:自制长方形框架、方格纸、课件、平行四边形卡片、剪刀、三角板、直尺等。

教学过程:

一、创设情境,铺垫导入

1、(出示教具)这是一个长方形框架,它的长是6厘米,宽是4厘米,它所围成的长方形面积是多少?你是怎样想的?

(板书:长方形的面积=长×宽)

2、如果捏住这个长方形的一组对角,向外这样拉,(教师演示)同学们看看,现在变成了什么图形?(平行四边形)

3、你还知道关于平行四边形的哪些知识?(出示课件平行四边形)

4、这样一拉,形状变了,面积变了吗?

5、(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?(生:平行四边形的面积等于相邻两条边的乘积)

6、究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。

请同学们用数方格的方法来算出这个平行四边形的面积,(教师把长方形及拉成的平行四边形框架放在方格纸上,数一数它们的面积)数的时候要注意,每个小方格的面积是1平方厘米,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是18平方厘米,使学生明确拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积。)

7、看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算。(板书课题:平行四边形的面积)

二、合作探索,迁移创造

1、用数方格的方法计算平行四边形面积。

(1)、出示面积和平行四边形相等的一个长方形。提问:数一数,这个长方形和这个平行四边形的面积相同吗?

(2)、小组讨论,观察比较两个图形的关系,提问完成表格。提问:你发现了什么?

引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

(3)根据你的发现你能想到什么?

2、图形转换

(1)、不数方格能不能计算平行四边形的面积呢?(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把这个平行四边形转换成一个与它面积相等的图形来计算它的面积呢?(能)可以转换成什么图形?(长方形)怎样将平行四边形转换成与它面积相等的长方形?

(2)四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作,小组汇报上台演示剪拼过程)边剪拼边观察思考:拼出的长方形和原来的平行四边形相比,面积变了没有?拼出的'长方形的长和宽与原来的平行四边形的底和高有什么关系?(板书:平行四边形 底 高)

(3)(教师演示说明)这个长方形的面积与原来的平行四边形面积相等,这个长方形的长与原来平行四边形的底相等,这个长方形的宽与原来平行四边形的高相等。(板书连接符号)

3、推导公式

师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积怎样计算?(平行四边形的面积等于底乘高)

(板书:平行四边形的面积=底×高)

师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)(教师板书:S=ah)

4、出示例1(课件),例1给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

5、提问质疑

师:刚才同学们的表现都不错,下面请大家阅读课本80―81页,还有什么疑问,请提出来。(学生阅读课本和质疑)要求平行四边形的面积,必须知道什么条件?

三、层层递进,拓展深化

1、算一算,填空,(课件出示)指名回答。

(1)、一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )平方厘米。

(2)、一个平行四边形的底是8米,高是5米,这个平行四边形的面积是( )平方米。

(3)、一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是( )平方分米。

2、用手势判断对错(课件出示),先读题后再判断,并说说错误的原因。

(1)、把一个平行四边形割补成长方形,它们的面积相等。( )

(2)、一个平行四边形的底是7分米,高是4分米,面积是28分。( )

(3)、一个平行四边形的底是5米,高是4分米,面积是20平方米。( )

3、想一想 :(课件出示在一组平行线之间有两个等底等高的平行四边形图。)

师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等)

四、总结全课,提高认识

反思一下刚才我们的学习过程,你有什么收获?

计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?

金秋十月,桂花飘香。我有幸参加《平行四边形的面积》“同课异构”的教学研讨。下面我将自己的教学做如下反思:

建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,本课创设的问题情境是以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备DD成为一名探索者,为充分发挥学生主体作用奠定了基础。

有助于学生感受教学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,理解数学,提高学生的数学解决问题的能力。

在学生探索活动开始之前,教师没有任何帮助,但正是这种没有铺垫的教学,学生真实的思维活动得到了体现,问题解决的策略不再像前述教学整齐划一,课堂更加丰富多彩,教学过程充满了生命活力。实践证明,学生完全具备独立解决问题的能力,他们的成长并不需要教师“迫不及待”的帮助,他们需要经历从混沌到清晰的过程、正确与错误的考验,他们需要的是探索的时空、交流的机会和心理安全的、富有激励性的学习氛围,这些才是学生需要的帮助。

在操作探索,推导公式中。先启发谈话,猜测平行四边形的面积,然后让学生实践操作,让学生拿出剪好的平行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?

学生动手若干分种,教师要注意巡视,选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述平移(可能学生说得不准确)。这样让学生凭借“独立思考、小组交流互评”的渐进过程进行充分的自主探究,在“亲历”和“体验”中初步感悟计算平行四边形面积的方法。这样设计,让学生经历从特殊问题到一般问题的过程,使得学生的数学学习做到重点突破,为后面进一步学习面积公式作好铺垫。当然,在这个环节中不管是操作还是汇报,感觉还不够到位。

感悟

正如波利亚所说:“学习任何知识的最佳途径都是由自己去发现。因为这种发现,理解最深刻,也最容易掌握内在规律与联系。”在案例二中,正是有了自主探索的时空,学生才充分调动自己原有的认知结构和生活经验,发挥自己的聪明才智,通过不同角度的探索,想出这么多的方法来解决新问题;正是有了交流的机会、展示的舞台,学生才敢于大胆表达不同的见解,提出个性化、创造性的问题解决办法;也正是经历了从混沌到清晰的过程、正确与错误的考验,学生才从中体会到了数学思考的乐趣、探索成功的喜悦。

多次实践使我们体会到,只有当教师真正了解了学生的需要,才能做到“该出手时才出手”,才能在学生感到“柳暗花明疑无路”时,他才巧妙地“拨开乌云见月明”,让学生眼前“豁然开朗”,只有这样的帮助才是促进学生发展所需要的真正的帮助。也许这样,我们的学生会遇到困难和挫折,我们的课堂会失去“严谨”和“流畅”,也许预设的任务会难以完全达成,但当我们发现学生敢于独立思考,奋力向前,大声喊出“让我试试”;当课堂成为学生的天地,真正体会到“海阔凭鱼跃,天高任我飞”的美妙滋味时,身为教师,我们还有什么理由一味地信守着“师者,传道授业解惑”的传统观念呢?

我们是农夫,但不是“拔苗助长”的农夫,应是一个懂得怎样真正帮助禾苗成长的“农夫”,是一个让“禾苗”充分享受自由空间、阳光和雨露,也经历风吹雨打,最终能品尝到“硕果累累”之喜悦的农夫。