七年级数学上册教案
- 文档
- 2024-08-09
- 102热度
- 0评论
下面是小编为大家推荐的七年级数学上册教案,本文共15篇,欢迎大家分享。
课题: 1.3.1 有理数的加法(一)
教学目标 1,在现实背景中理解有理数加法的意义.
2,经历探索有理数加法法则的过程,理解有理数的加法法则.
3,能积极地参与探究有理数加法法
则的活动,并学会与他人交流合作.
4,能较为熟练地进行有理数的加法
运算,并能解决简单的实际间题.
5,在教学中适当渗透分类讨论思想
教学难点 异号两数相加
知识重点 和的符号的确定
教学过程(师生活动) 设计理念
设置情境
引入课题 回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记
为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是
我们这节课一起与大家探讨的问题.
(出示课题)
让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要
性,激发学生探究新知的兴趣.
分析问题
探究新知 如果是球队在某场比赛中上半场失了两个球,下
半场失了3个球,那么它的得胜球是几个呢?算式应该
怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可
能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况.
2,借助数轴来讨论有理数的加法.I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.
(2)交流汇报.(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则.
有理数加法法则:
1,同号两数相加,取相同的符号,并把绝对值相加.
2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
3,一个数同。
相加,仍得这个数. 再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在
此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想.
估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(-),0+(+),0+(一).
,但不能把它归的为同号异
号等三类,所以此处需教师.点拔、指扎,体现教师的引导者作用.
①假设原点0为第一次运动起点,第二次运动
的起点是第一次运动的终点.②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行.
③让学生感受“数学模型”
的思想.④学会与同伴交
流,并在交流中获益.培养学生的语言表达
能力和归纳能力,也许学
生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现
的规律
解决问题 解决问题
例1计算:
(1)(-3)+(-9); (2)(-5)+13;
(3)0十(-7); (4)(-4.7)+3.9.
教师板演,让学生说出每一步运算所依据的法则.
请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)
例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数.
(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)
学生活动:请学生说一说在生活中用到有理数加法的例子。
注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位.(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过
程写完整.(3)体现化归思想.(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算.
拓宽学生视野,让学
生体会到数学与生活的密切联系。
课堂练习教科书第23页练习
小结与作业
课堂小结 通过这节课的学习,你有哪些收获,学生自己总结。
本课作业 必做题:阅读教科书第20~22页,教科书第31习题1.3第1、12、第13题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程.
2,注意渗透数学思想方法.数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).
如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.
3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听
别人的意见和建议.
初中数学分层教学【2】
一、分层教学的必要性
新的课程标准要求数学应该面向每一位学生,实现全体学生都能获得必要的数学,学习有价值的数学,使得不同层次的学生在数学领域取得不同的发展与进步。
当今,教学方式仍为传统的“平行分班”模式,由于学生的兴趣爱好、潜在能力、学习方法、基础知识状况、学习动机、智力水平等存在差异,其领悟教学内容的情况也就参差不齐,
并且每个班里学生人数数量太大,假如教师按照中等学生的水平授课,那么长此以往,对于优秀学生来说其能力得不到有效的提升,对于后进生来说也赶不上教师的进度,最基本的知识也掌握不了,不能实现全体学生的素质整体提高的目标。
因此,实施分层教学很有必要。
通过之前实行的分层教学的实验教学,我们发现被试验的班级学生的数学成绩明显高于对照班学生的成绩,在优秀率、及格率和平均分方面均提高百分之十几。
同时,在数学竞赛方面,实验班中有学生获得市级以上奖项。
由此可见,分层教学方法的试验施行,有效提高了学生的学习效率和教师的教学效率,实现了我们教学中一直所追求的因材施教的目标。
二、实施分层教学的措施
(一)对全体学生进行分层
在新学年开始,教师可以通过摸底考试来了解学生的基础知识水平,然后通过调查学生的认知能力、个性特征、心理倾向等来判断学生的可塑性,通过两者相结合将学生进行分层。
教师也可以通过在教学过程中对学生实际情况的了解,结合学生平常的'学习主动性、平时表现、智力水平、对所学知识的掌握程度,将学生分为一、二、三组。
一组学生可塑性好,基础知识也扎实;二组学生可塑性中等,基础知识水平中等;三组学生可塑性差,基础知识不牢固。
而且二组学生所占的比例要占整体学生的一半以上,这样可以照顾到全班学生的心理感受。
分组应该按照规定的时间进行重新调整,这样可以使三组的学生积极向上,争取到一组或二组。
一组的学生会更加努力而不至于落入其他两个组,争取实现三组逐渐消失,二组逐渐壮大的目标。
(二)对教学过程进行分层
一组的学生属于具有主观能动性的学生,教师的作用主要是引导,扩展一组学生的思维;二组的学生属于需要教师点拨的类型,教师应该在课堂中多提问他们,与他们进行互动,逐渐提高他们的数学兴趣与能力,争取向一组靠拢;三组的学生属于依赖同学及教师型。
教师可以在课下多提醒他们完成相应的作业或让一二组的学生帮助他们,使他们理解教学内容即可。
(三)对课后作业进行分层
根据学生的分层情况,教师应该对不同层次学生的课后作业实行差异化要求。
对于一组的学生,教师应该严格要求,使其在完成课本习题、做配套的参考书练习之外,总结解题方法并将同类型的题整理到一个专用笔记本上,以有助于他们进行深入学习。
在此基础上,教师应该有针对性地要求他们做有关数学竞赛方面的习题,提高其创新能力,扩展其思维方式。
对于二组的学生,教师就没必要要求其做数学竞赛习题,而应鼓励他们对知识进行总结并思考,争取进入到一组。
对于三组的学生,完成课本习题,理解教师讲授的教学内容即可,从而不断树立他们学好数学的信心。
(四)对考试试卷进行分层
由于对学生进行分层,为了检测出各个层次的学生完成教学目标的程度,教师应该对不同层次的学生制定水平各异的考试试卷,以切实做到评价学生的真实水平,为下一阶段对学生进行分层调整做好准备。
同时,对于进步大的学生,教师应给予表扬;对于完成情况不好的学生,教师要及时帮助他们发现问题并解决问题,并辅以相应的激励措施,保护其受伤的自尊心,使学生慢慢进步。
三、总结
总而言之,学生是学习的主体,而教师则是学生在学习道路上的指引者,教师的作用就是帮助学生制定合适的学习目标并使之趋于完善。
分层教学不仅可以实现因材施教的目标,而且可以提高学生学习数学的自信心,有利于学生发散思维的培养,更重要的是可以使各个层次学生的水平得到提高,这符合新课标的要求。
因此,初中数学教师可以采取分层教学方法来达到提高自己学生水平的目的。
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=10
2x+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=10
2x+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
x xy
y
上表中哪对x、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的'内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
①通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念
2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系
(2)数轴能反映数的性质、
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数
(4)数轴可使有理数大小的比较形象化
3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分
4、正确理解绝对值的概念是难点
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值
(2)有理数的绝对值是一个非负数,即最小的绝对值是零
(3)两个互为相反数的绝对值相等,即│a│=│-a│
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,则a=b,或a=-b或a=b=0
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值
(4)会利用数轴和绝对值比较有理数的大小
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值
2、难点:准确理解负数、绝对值等概念
3、关键:正确理解负数的意义和绝对值的意义
课时划分
1、1 正数和负数 2课时
1、2 有理数 5课时
1、3 有理数的加减法 4课时
1、4 有理数的乘除法 5课时
1、5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1、1正数和负数
第一课时
三维目标
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪、
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量。
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量
六、巩固练
课本第3页,练习1、2、3、4题
【知识与技能】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.
2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.
【过程与方法】
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.
【情感态度】
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.
【教学重点】
理解算术平方根的概念.
【教学难点】
根据算术平方根的概念正确求出非负数的算术平方根.
一、情境导入,初步认识
教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.
问题1求出下列各数的平方.
1,0,(-1),-1/3,3,1/2.
问题2下列各数分别是某实数的平方,请求出某实数.
25,0,4,4/25,1/144,-1/4,1.69.
对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.
由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.
22=4,(-2) =4,故平方为4的数为2或-2.
问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?
分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.
《6.1.2平方根》课堂练习题
2.(绵阳中考)±2是4的(A)
A.平方根B.相反数
C.绝对值D.算术平方根
3.下面说法中不正确的是(D)
A.6是36的平方根B.-6是36的平方根
C.36的平方根是±6 D.36的平方根是6
4.下列说法正确的是(D)
A.任何非负数都有两个平方根
B.一个正数的平方根仍然是正数
C.只有正数才有平方根
D.负数没有平方根
《6.1平方根》课时练习含答案
15.下面说法正确的是( )
A.4是2的平方根
B.2是4的算术平方根
C.0的算术平方根不存在
D.-1的平方的算术平方根是-1
答案:B
知识点:平方根;算术平方根
解析:
解答:A、4不是2的平方根,故本选项错误;
B、2是4的算术平方根,故本选项正确;
C、0的算术平方根是0,故本选项错误;
D、-1的平方为1,1的算术平方根为1,故本选项错误.
故选B.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.
教学目标
【知识与能力目标】
1、巩固理解有理数的概念;
2、掌握数轴的意义及构成特点,明确其在实际中的应用;
3、会用数轴上的点表示有理数。
【过程与方法目标】
【情感态度价值观目标】
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例;
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;
结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;
不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度;
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;
5、归纳
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
二、例题分析
例1.先画出数轴,然后在数轴上表示下列各数:
-1、5,0,-2,2,-10/3
例2、数轴上与原点距离4个长度单位的点表示的数是。
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是;
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;
(4)如图,a、b为有理数,则a0,b0,ab
课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
教 案
第一章 有理数
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-) 0.025.
第2课时 加法运算律
教学目标:
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行推理训练.
教学重点:如何运用加法运算律简化运算.
教学难点:灵活运用加法运算律.
教与学互动设计:
(一)情境创设,导入新课
思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.
(二)合作交流,解读探究
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b= (学生填).
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出结论:加法结合律:(a+b)+c= .
【例1】计算:
16+(-25)+24+(-35)
【例2】课本P20例3
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.
(三)应用迁移,巩固提高
【例3】 利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
(四)总结反思,拓展升华
本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.
(五)课堂跟踪反馈
夯实基础
1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.计算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时 有理数的减法
教学目标:
1.经历探索有理数减法法则的过程,理解有理数减法法则.
2.会熟练进行有理数减法运算.
教学重点:有理数减法法则和运算.
教学难点:有理数减法法则的推导.
教与学互动设计
(一)创设情景,导入新课
观察温度计:
你能从温度计看出4℃比-3℃高出多少度吗?
学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?
按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.
(二)动手实践,发现新知
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3.
(三)类比探究,总结提高
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,
又因为(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述结论依然成立.
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.
减法法则:减去一个数,等于加上这个数的相反数.
用字母表示:a-b=a+(-b).
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
(四)例题分析,运用法则
【例】计算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)总结巩固,初步应用
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.
【教学目标】
1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】
重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】
圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型
【教学过程】
一、创设情境
多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.
设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.
二、讨论(动态研究)
课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?
观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.
让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)
设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)
教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
四、探索
1、课本112页观察,并回答它的问题。
引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。
2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:
这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?
让学生自己体会并小组讨论得出点、线、面、体之间的关系。
五、作业
1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.
2、阅读教科书第119页的实验与探究,并思考有关问题。
教学目标
1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)
2.能将用科学记数法表示的数还原为原数.(重点)
教学过程
一、情境导入
在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.
如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.
生活中,我们还常会遇到一些比较大的数.例如:
1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.
2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.
3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.
像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?
二、合作探究
探究点一:用科学记数法表示大数
例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为( )
A.167×103 B.16.7×104
C.1.67×105 D.1.6710×106
解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.
方法总结:科学记数法的表示形式为a×10n,其中1≤|a|
例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元( )
A.9.34×102 B.0.934×103
C.9.34×109 D.9.34×1010
解析:934千万=9340000000=9.34×109.故选C.
方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.
探究点二:将用科学记数法表示的数转换为原数
例3 已知下列用科学记数法表示的数,写出原来的数:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.
解:(1)2.01×104=0;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.
三、板书设计
科学记数法:
(1)把大于10的数表示成a×10n的形式.
(2)a的范围是1≤|a|
(3)n比原数的整数位数少1.
教学反思
本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.
教学目标
1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、
2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、
重点
掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、
难点
识别单项式的系数和次数、
教学过程
一、创设情境,导入新课
师:出示图片、
青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?
(2)t小时呢?
二、推进新课
(一)用含字母的式子表示数量关系、
师:出示第54页例1、
生:解答例1后,讨论问题,用字母表示数有什么意义?
学生经过讨论得出一定的答案,但可能不会太规范,教师总结、
师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的.字母也是代数式)、
师生共同完成例2,进一步体会用字母表示数的意义、
巩固练习:第56页练习、
(二)单项式的概念、
师:出示问题、
引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?
生:通过观察、对比、讨论得出,各式都是数或字母的积、
师:指出单项式的概念,特别地,单独的一个数或字母也是单项式
教学目标:
知识目标:有理数的概念,有理数的分类,熟练的写出某集合中的数。
过程与方法:感受分类的思想,分类的依据。
情感态度价值观:感受数的对称美,
课堂教学过程
一.情境问题:
到目前为止,你能举出哪些数,你能把这些数分类吗?你的分类依据是什么?有理数:整数正整数,0,负整数。
分数正分数,负分数。
有理数:正有理数
负有理数。
二.尝试应用:
1课本第8页练习。补充:整数集合,负整数集合,分数集合。
2判断:1.正整数和负整数统称为整数。
2.小数不是有理数。
3正数和负数统称为有理数。
4分数包括正分数和负分数。
baogao.oh100.com 是有理数。
三.补偿提高:
将下列的数填在相应的括号中。
-8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.
正整数集合:
负整数集合:
正分数集合:
负分数集合:
正数集合:
分数集合:
非正数集合:
自然数集合:
思考:既是正数又是整数的.数是什么数?既是负数又是分数的数是什么数?
四.小结与反思:
本节课用到得思想,重要知识,注意问题,你的疑惑.
教后反思:
本节对有理数的分类:按正负来分,按整数和分数来分。明确分类标准。能正确的写出某些数的集合。
本节需要学生熟练。再有理数的分类的探讨上二班较流畅,但是正负来分为落实好。
一、教学目标
1、知识与技能:
(1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。
(2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。
2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。
3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。
4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。
二、教学重点、难点关键
1、教学重点:角的概念、表示方法及角度制的换算
2、教学难点:角的表示方法、角度制的换算
3、关键:学会观察图形是正确表示一个角的关键
三、学情分析
角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法
四、教学准备
为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。
五、教学用具:
量角器
六、教学过程
(一)引入新课
1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。
2提出问题:
时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。
学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。
(二)活动探究,建构新知
活动一
角的概念
师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:
a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;
b、角也可以看成由一条射线绕着它的端点旋转而成的图形。
(学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)
活动二
角的表示
师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)
生:角的表示方法有:
1、角的符号+三个大写字母,如:∠aob
2、角的符号+一个大写字母,如:∠o
(顶点处只有一个角时)
3、角的符号+数字如:∠1
4、角的符号+希腊字母如∠α
师:在用这些方法表示角的时候应该注意些什么呢?
生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。
师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。
(在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)
尝试应用,反馈矫正
师:请同学们完成下面的练习
1、图中共有多少个角?请分别表示出来。
c
2、将图中的角用不同方法表示出来并填写下表
b
b
∠1
∠bca∠3∠4abc
ceda
获得积极深层次的体验,从而促进学生探究能力的发展)
活动三
角的度量与比较
ab
师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c
1、先估测图中所示各个角的大小
2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好
4、对于角的比较大小,你还能有什么好的方法吗?
生:1、∠b最大
2、∠a=28°∠b=91°∠c=45°
量角器的使用方法:“一对中,二合线,三读数”
1、点b射门最好。
2、对于角的比较大小,也可以通过叠合的方法来比较。
(通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)
(三)、巩固练习,迁移新知
试一试1、如图打台球的时候,球的反射角总是等于入射角。
请同学们估测球反弹后会撞击图中的哪一点?
(问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)
2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;
(2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写
出哪些有关的角的和与差的关系式?o
dac
b
(问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)
3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。
(问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:
(1)度、分、秒是常用的角的度量单位;
(2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习
(四)、归纳总结,系统知识
师:本节课学习了哪些知识?
生:学习了角的概念、角的表示、角的比较与度量,角的换算。
师:通过本节课的实践、探索、交流与讨论,你有哪些收获?
生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等
(五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。
【学习目标】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】能验证一个数是否是一个方程的解。
1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是( )
A.6x+6(x-2 000)=150 000
B.6x+6(x+2 000)=150 000
C.6x+6(x-2 000)=15
D.6x+6(x+2 000)=15
2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.
3.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,则原正方形花圃的边长是多少?(只列方程)
《3.1.等式的性质》同步四维训练含答案
知识点一:等式的性质1
1.下列变形错误的是(D )
A.若a=b,则a+c=b+c
B.若a+2=b+2,则a=b
C.若4=x-1,则x=4+1
D.若2+x=3,则x=3+2
2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C )
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1从算式到方程》同步练习含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故选B.
根据方程解的'定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.
本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7没有未知数,不是方程;
D、2x
故选:A.
根据方程的定义:含有未知数的等式叫方程解答即可.数或整式
【学习目标】
1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】
识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】
一、知识链接
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究
1、几何图形
(1)仔细观察图4、1—1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4、1—2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2、立体图形
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4、1—4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3、平面图形
平面图形的概念
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4、1—5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……。
思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
《4、1、2点、线、面、体》同步四维训练
知识点一:几何体的构成
1、下列结论正确的是(C)
①圆柱由3个面围成,这3个面都是平面;
②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;
③球仅由1个面围成,这个面是平面;
④正方体由6个面围成,这6个面都是平面、
A、①②B、②③C、②④D、①④
《4、1、2点、线、面、体》同步练习含解析
一、单选题(共12题;共24分)
1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的
A、正方形
B、等腰三角形
C、圆
D、等腰梯形
2、下面现象能说明“面动成体”的是
A、旋转一扇门,门运动的痕迹
B、扔一块小石子,小石子在空中飞行的路线
C、天空划过一道流星
D、时钟秒针旋转时扫过的痕迹
3、下列说法中,正确的是
A、棱柱的侧面可以是三角形
B、四棱锥由四个面组成的
C、正方体的各条棱都相等
D、长方形纸板绕它的一条边旋转1周可以形成棱柱
教学目标
1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.
重点、难点
重点:探索并理解平移的性质.
难点:对平移的认识和性质的探索.
教学过程
一、引入新课
1.教师打开幻灯机,投放课本图5.4-1的图案.
2.学生观察这些图案、思考并回答问题.
(1)它们有什么共同的特点?
(2)能否根据其中的一部分绘制出整个图案?
3.师生交流.
(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.
《5.4平移》同步讲义练习和同步练习
1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为 cm2.
3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是 .
《5.4平移》同步测试卷含答案
1. 将图形平移,下列结论错误的是( )
A.对应线段相等
B.对应角相等
C.对应点所连的线段互相平分
D.对应点所连的线段相等
解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.
12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )
A.轴对称 B.平移 C.旋转 D.平移和旋转
解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.
教学目标和要求:
1.理解单项式及单项式系数、次数的概念.
2.会准确迅速地确定一个单项式的系数和次数.
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.
教学过程:
一、复习引入:
1、列代数式
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)
2、请学生说出所列代数式的意义.
3、请学生观察所列代数式包含哪些运算,有何共同运算特征.
由小组讨论后,经小组推荐人员回答,教师适当点拨.
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,
如a,5.
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以
四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.
单项式的系数:单项式中的数字因数叫做这个单项式的系数.
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4.例题:
例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-,次数是3.
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.
答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确
强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关.
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)
三、课堂小结:
①单项式及单项式的系数、次数.
②根据教学过程反馈的信息对出现的问题有针对性地进行小结.
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.
★
★
★
★
★
★
★
★
★
★