苏教版六年级数学下册教案

以下是小编为大家整理的苏教版六年级数学下册教案,本文共14篇,仅供参考,欢迎大家阅读。

苏教版六年级数学下册教案

复习内容:第12册P92―93“练习与实践”7―9题。

复习目标:

1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。

2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。

3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。

教学准备:课件

课时安排:第二课时

课前设计:

1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?

2.学生练习、交流、检验。

3.练习P93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。

4.练习P93第9题。

学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。

教学内容:教材55页的例2和练一练,练习十二的第3--5题。

教学目标:使学生经历探究根据给出的方向和距离在平面上画出相关物体的位置的方法,并能根据给出的方向和距离在平面图上准确画出相关物体的位置。

重点难点:帮助学生进一步理解和掌握用方向和距离在平面图上表示物体位置的方法。

教学准备:教学光盘

教学过程:

一、复习

1、出示以灯塔为中心的平面图。

(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?

相机指出:东――E 西――W 南――S 北――N

(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。

2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。

二、展开

1、明确清凉岛的位置。

(1)题目中告诉我们清凉岛在哪里?

(2)你能在图上指一指清凉岛的大致位置吗?

自己在图上指出来,并和同学交流一下。

2、探究操作。

(1)怎么在图上画出清凉岛的位置呢?

在小组中讨论后全班交流。

使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。

(2)怎么画出北偏东40°的射线?

各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?

指名上黑板画,注意引导学生正确摆放量角器。

让学生说说画表示方向的射线时要注意什么?

(3)怎么确定灯塔到清凉岛的距离?

图中告诉我们这幅图的比例尺是多少?表示什么意思?

清凉岛在北偏东40°方向20千米处,图中清凉岛的位置在灯塔处沿北偏东40°方向的射线几厘米的地方?怎么想?

各自计算后指名汇报:20÷5=4(厘米)

追问:为什么用20÷5就是图上距离了?

引导学生在图上标出清凉岛的位置,并与同学交流。

3、试一试

(1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?

(2)各自独立完成。

(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。

三、练习

1、讨论“练一练”

(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?

自己先算一算实际距离,然后与同座位的同学说一说。

汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?

孔雀园呢?

引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。

(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。

各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。

练习后交流思考的方法和具体的画法。

2、讨论练习十二第3题。

(1)出示题目,理解题目所包含的信息。

(2)飞机A在机场的什么位置?

(3)飞机B、C、D、E分别在机场的什么位置?你能在途中表示出这四架飞机的位置吗?

各自在图上表示出来,然后汇报交流。

四、课堂作业:练习十二第4题和第5题以及补充习题相关练习。

教学内容:

比例

第一课时

教学目标:

1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。

2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。

3、初步体会图形的相似,进一步发展空间观念。

重点难点:

1、理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小

2、学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。

教学过程:

一、导入。

呈现例1图片在黑板上。

提问:把放大前后的两幅画相比,你能发现什么?

根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。

板书课题:图形的放大和缩小

二、教学例1。

1、认识图形的放大

出示例1中两幅图片长和宽的数据。

提问:两幅图的长有什么关系?宽呢?

组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。

指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。

提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?

2、认识图形的缩小。

谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。 提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的几分之几?

各是多少厘米?

先在小组里说一说,再组织全班交流。

三、教学例21、出示例2,让学生读题

(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?

(2)学生画图,再展示、交流。

(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。

重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。

2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?

让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)

3、教学试一试

先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?

提问:量一量,斜边的长也是原来的2倍吗?你发现什么?

小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。

四、巩固练习

1、做练一练

让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?

2、做练习六第1、2题。

第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。

五、全课小结。

什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?

六、课堂作业 补充习题28-29页

一、引

1、引入课题

师: 这节课我们一起来探究学习“观察与探究”(板书课题)

2、出示学习目标

本节课我们的学习目标是:(课件出示)

让学生尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。

渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。

二、学加导

师:明确了目标,请同学们借助自学指导来完成目标。

自学指导:自学课本27页,完成所提出的问题,并说说自己的想法。(先自学4分钟,然后小组交流1分钟。)

(一)学生自学:(先学)

师:好,开始。先自学2分钟,然后小组交流3分钟。

(二)汇报交流:(后教)

小组汇报,全班总结。

三、巩固练习

(一)学生自学:(先学)

(1)长方形面积一定,长与宽成反比例吗?为什么?|

(2)这节课我们用图表表示成反比例的量之间的关系。

用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。

1.观察表格,根据数据在方格纸上画出这8个长方形。

2.把图中的点用平滑的曲线依次连起来。

3.长和宽是怎样变化的?有什么规律?长扩大,宽缩小,相对应的长和宽的乘积是24。

(二)交流订正:(后教)

1.更正

师:学完后,在小组内进行交流。(有错的在小组中说错的原因,不会的优生讲解。)

2.讨论

集体订正。(学困生先说,优生纠正,学困生再说)

四、全课小结

师:同学们这节课已接近尾声,回顾本节课,你有什收获?

最新苏教版六年级数学下册教案

(3)转化以后的长方体图形和圆柱体之间有什么关系?

5. 推导圆柱体积公式。

学生交流

(1)把圆柱体转化成长方体。

(2)怎样转化成长方体呢?

(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)

(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。

(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)

(5)推导圆柱体积公式。

讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)

教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:

圆柱的体积 = 底面积×高

V= S h

如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?

V=π r?h

三.尝试应用,拓展新知。

1.填表。

2.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?

这道题已知什么?求什么?能不能根据公式直接计算?让学生试做,集体反馈。

3.计算下面各圆柱体的体积。(练习五第1题)

4.李家庄挖了一口圆柱形水井,地面以下的井深10m,底面直径为1m。挖出的土有多少立方米?

5.学校建了两个同样大小的圆柱形花坛。花坛的底面内直径为3m,高为0.8m。如果里面填土的高度是0.5m,两个花坛中共需要填土多少立方米?

6.一个圆柱的体积是px3,底面积是16 cm2。它的高是多少厘米?

课后小结

通过这节课的学习,你有什么新的收获吗?如果你还有疑惑可以提出来,大家一起来解决。

板书

板书设计:

圆柱的体积

长方体的体积 = 底面积 × 高

圆柱的体积 = 底面积 × 高

V=S h

V=π r?h

六年级下册数学总复习教案三

教学准备

教学目标

圆柱的体积(2)教案

【教学内容】

圆柱的体积(2)

【教学目标】

能运用圆柱的体积计算公式解决简单的实际问题。

教学重难点

容积计算和体积计算的异同,体积计算公式的灵活运用。

教学过程

【复习导入】

口头回答。

教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。板书:圆柱的体积=底面积×高V=Sh=πr2h

【新课讲授】

1.教学例6。

(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。

(2)学生尝试完成例6。

①杯子的底面积:

3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)

(3)比较一下补充例题和例6有哪些相同的地方和不同的地方?

学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。

2.教学补充例题。

(1)出示补充例题:教材第26页“做一做”第1题。

(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比较。

(3)教师评讲本题。

【课堂作业】

教材第26页“做一做”第2题,第28页练习五第3、4题。

第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。

第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。

答案:“做一做”:

2. 3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)

第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)

第4题:80÷16=5(cm)

【课堂小结】

通过这节课的学习,你有什么收获和感受?

【课后作业】

完成练习册中本课时的练习。

圆柱的体积(2)

圆柱的体积=底面积×高

V=Sh=πr2h

课后小结

本课时主要在讲解例题,教师应注意培养学生良好的做题习惯,先分析题意,弄清楚求什么,再列式。

课后习题

教材第26页“做一做”第2题,第28页练习五第3、4题。

第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。

第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。

答案:“做一做”:

2. 3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)

第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)

第4题:80÷16=5(cm)

板书

圆柱的体积(2)

圆柱的体积=底面积×高

V=Sh=πr2h

教学准备

教学目标

1、从具体情境中体会学习圆锥体积公式的必要性并进行大胆猜想。

2、在操作、观察、思考、探究等学习活动中推导出圆锥的体积公式,并能有条理的说出推导过程。

3、根据圆锥体积公式,解决简单的实际问题。

教学重难点

教学重点:圆锥体积计算公式

教学难点:圆锥体积计算公式的推导过程

教学工具

ppt课件

教学过程

一、激趣引入:

师:同学们,老师请你们看一个动画:一天大头儿子和小头爸爸到动物园,那里的风景可真美,就是天气有点热,他们决定买冰淇淋。大头儿子来到冷饮店,看见两种冰淇淋。一种圆柱形的,2元一支;一种圆锥形的1元一支。大头儿子转着眼睛,不知买哪一种既经济又实惠的冰淇淋,同学们,你们能帮帮他吗?

师:同学们都很棒,为了帮助大头儿子解决这个问题,这节课我们就来学习“圆锥的体积”的计算好吗?(板书课题)

二、自主探究,合作交流

一、认识圆锥的体积

1、出示圆锥,引导学生说出圆锥的体积的意义。

课件出示:圆锥所占空间的大小叫做圆锥的体积。

2、演示排水法求圆锥的体积。

引导学生回忆不规则物体的测量方法说出排水法。

3、冰激淋不能用排水法求体积,要怎样求呢?

(二)教学例2. (探究圆锥的体积公式)

1、引导学生猜想。

师:出示长方体、正方体、圆柱体

同学们猜一猜,圆锥的体积计算应该和哪一个立体图形有关?

师:同学们再大胆猜一猜,圆锥的体积计算应该和什么量有关?

2、认识等底等高的圆柱和圆锥。

师课件演示怎样是等底等高的圆柱和圆锥。

师:出示等底等高的圆柱和圆锥两个容器让学生猜一猜,这个圆柱容器所能容纳物体的体积是圆锥的几倍?

板书:学生猜想。

3、实验验证猜想。

(1)明确实验方法、理解实验表和实验要求。

(2)学生实验

(3)交流实验结果。

学生小组汇报,老师课件演示。

(4)得出结论

师:通过实验你发现了什么?

生1:等底等高的圆柱是圆锥体积的3倍。

生2:等底等高的圆锥是圆柱体积的三分之一。

师:那不等底等高的圆柱和圆锥两个容器的容积存在这个倍数关系吗?

生:不存在。

明确哪个学生的猜想是对的。

4、推导圆锥的体积。

引导学生推导圆锥的体积

师:根据我们得出的结论,你能写出圆锥的体积计算公式吗?

根据学生回答板书:V圆锥 = 13 V圆柱 =13 Sh

强调:S是圆柱的底面积,也是圆锥的底面积;h是圆柱的高,也是圆锥的高,所以圆锥的体积等于底面积×高×13

师:想一想,根据刚才的实验,你发现了什么?要求圆锥的体积必须知道什么?

生:圆锥的体积等于它等底等高圆柱体积的三分之一。

师:为什么有三分之一?

生:因为实验时,圆锥向和它等底等高的圆柱里倒了三次。

师:我们知道了怎样求圆锥的体积,那么假如圆柱形冰淇淋和圆锥形的冰淇淋是等底等高,你们说大头儿子买哪种合算呢?(这时同学们异口同声回答答案)。

师:所以,数学来源于生活,生活离不开数学,生活中有很多问题都可以用我们所学的数学知识来解决。

5、练一练(运用公式):

师:我们继续来解决生活中的数学问题。

课件出示34页做一做第1题,学生独立解决,全班交流。

(二)教学例3.(运用公式拓展)

课件出示例3

学生读题,分析题意

学生独立解决,全班交流。

规范做题格式。

(三)思考;求圆锥的体积,还可能出现那些情况?

引导学生梳理:

已知底面半径求体积;

已知底面直径求体积;

已知底面周长求体积。

三、巩固练习

1、填空(课件)

2、判断(课件)

3、34页做一做第2题,学生独立做,集体订正。

四、课堂小结

同学们,这节课有什么收获?

教学准备

教学目标

1. 知识技能:学生经历用切割拼合的方法推导出圆柱体积公式

的过程,理解圆柱体积公式的推导过程,掌握圆柱体积的计算方法。

2.数学思考与问题解决:在自主探究的过程中,运用圆柱体的体积解决简单的实际问题,培养学生独立思考及解决问题的能力。

3.情感态度:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重难点

学生经历并理解圆柱体积公式的推导过程。

教学难点:圆柱体积的计算公式的推导过程及其应用。

教学过程

一.情景导入,激起兴趣。

同学们,我们的图形世界十分丰富多彩,让我们一起来欣赏吧。这些图形都有什么特点?如何计算出它们的体积呢?你觉得圆柱的体积和什么有关?这节课我们一起来探究圆柱的体积。(板书:圆柱的体积)

二.巧妙转化,探究新知。

1. 呈现长方体、正方体和圆柱的直观图,它们都是直柱体,我们回忆一下长方体的体积公式。

长方体的体积=长×宽×高,长方体和正方体的体积的体积统一公式“底面积×高”,用字母怎样表示?(板书)

2.出示圆柱体,它的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?回忆一下圆面积计算公式的推导过程。

学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径)根据学生的叙述,教师课件演示。(演示课件:圆转化成长方形,推导圆面积公式的过程。)

3.现在老师给这个圆柱体变个魔术,仔细观察看看发生了什么变化?(动画演示)

4.学生小组讨论、交流。

教师:同学们自己先在小组里讨论一下

(1)圆柱体转化成什么立体图形?

(2)它是怎样转化成这个长方体的?

>>>下一页更多精彩“六年级下册数学总复习教案”

小学六年级数学下册知识点:圆柱和圆锥

1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11.把圆锥的侧面展开得到一个扇形。

12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13.常见的圆柱圆锥解决问题:

①压路机压过路面面积(求侧面积);

②压路机压过路面长度(求底面周长);

③水桶铁皮(求侧面积和一个底面积);

④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

小学6年级毕业考试数学重难知识点

工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:

确定工作量、工作时间、工作效率间的两两对应关系。

小学六年级数学学习方法

学生需要在课堂上做好笔记,用来记录老师讲课重点、补充难题、听课心得等内容,方便日后复习与记忆。而小学数学笔记的记录,很多孩子无法准确掌握,需要下点工夫,找到适合自己的方法。

一、为什么要记笔记?

笔记可以方便日后有重点、不失真地复习。

奥数课堂通常包含大量的信息,涵盖定义、公式、解题技巧等各个方面。大多数同学难以一堂课完全掌握全部内容。尤其我们的课堂还经常包含一些经典的难题、补充题,单凭一次性的记忆无法提供充分的反刍的素材。

二、记笔记要避免的误区

然而,很多同学出于不自信或者对家长的敷衍,为了笔记而笔记——笔记完成就“大功告成”、束之高阁。殊不知:记在自己脑袋里面的知识才是自己的知识,有笔记而无复习正是做笔记的错误。

三、记笔记的形式

你们的笔记本内容多吗?平时书包装满的时候,你能够方便的找到笔记本吗?单独阅读笔记的时候,你觉得丰富吗?如果这三个问题你都回答“否”,那么请考虑一下将全部的笔记搬到讲义上去。

笔记一定要方便日后查阅。书写过程中,字迹不要求美观,但是至少直观。

关于某一题的延伸记录在题目旁边,关于一讲的梳理可以放到章节前,补充的题目可以放到章节后,个人心得可以放在页眉页脚。如果有补充随材还可以粘贴或者插入到讲义当中。

简而言之,笔记在形式上的要求就是:用最小的篇幅记录最多的内容,同时分出清晰地层次。

六年级数学下册知识点:比例

1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11.正比例和反比例:

(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

例如:

①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

④40÷x=y,x和y成反比例,因为:x×y=40(一定)。

⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

12.图上距离:实际距离=比例尺;

例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:00。

13.实际距离=图上距离÷比例尺;

例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

14.图上距离=实际距离×比例尺;

例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

六年级毕业考试数学重难知识点:工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:

确定工作量、工作时间、工作效率间的两两对应关系。

小学六年级数学学习方法

六年级是备战小升初的最后阶段,学生要归纳和梳理知识点,记清楚概念。另外,通过历年真题的分析能够使得学生整个知识体系得到优化与完善,解题速度和能力得以提升。作为家长,需要做好孩子考前的心理疏导,排查知识和学习状态上的漏洞和不足,有的放矢地及时弥补。

六年级上学期(9~12月):

这一阶段是综合提升的关键阶段。在数学方面,需要对往年择校考题的分析,按考查的知识板块,分专题归纳总结,各个击破。

大致可分为计算部分(从基本的四则运算扩展到综合运算、繁分数运算、常见的简算、定义新运算、循环小数问题等)、图形部分(包括简单的基本平面图形、平面组合图形、简单的立体图形、立体组合图形等)、应用题部分(包括基本应用类型、提高类型等,应用题的种类繁多,在此就不之一举例了)、智巧类问题(这部分主要是涉及奥数知识的一些内容)。

分类的专题,一定要讲练结合,弄清楚知识和方法之间的逻辑关系,切不可死记公式、生套模板。

六年级寒假(1~2月):

这一阶段关键是要提升应考技巧。要按考试题型,逐个类型地掌握答题技巧,在做套题时要让孩子学会合理分配时间,尽量在有限的时间里多得分。

六年级下学期(3~4月):

这一阶段就是要做好综合训练,模拟冲刺、查漏补缺、调整状态。知识和技巧都掌握了,接下来就要进行实战演练。通过模拟题和真题演练,提高解题和得分能力,同时也调整孩子的学习状态,增强信心。另外,还要做好面试的准备。

3、使学生结合实例认识扇形统计图,理解众数和平均数。

4、初步掌握用方向和距离确定物体位置的方法。

5、使学生在解决实际问题的的过程中,学会用转化的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效地觯决问题。

6、使学生理解比例的意义和基本性质,会解比例;认识比例尺,会看比例尺,会进行比例尺的有关计算;理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,理解用比例关系解应用题的方法,学会用比例知识解答比较容易的应用题。

六年级数学教学计划下册篇三

一、复习内容:

本册的复习内容分为数与代数、空间与图形、统计与概率、综合应用、计算、应用题。其中计算和应用题是复习的重点和难点。

二、复习目标:

1、使学生比较系统地牢固地掌握有关整数、小数、分数、比和比例、简易方程等基础知识,具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,会解简易方程,养成检查和验算的习惯。

2、使学生巩固已获得的一些计算单位的大小的表象,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单改写。

3、使学生牢固地掌握所学的几何形体的特征,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单的画图、测量等技能。

4、使学生掌握所学的统计知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。

5、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答不复杂的应用题,解决生活中一些简单的实际问题。

三、复习措施:

对本班学生理解和掌握数学基础知识的情况以及能力发展的情况进行全面的分析研究,找出学生学习中的缺陷、薄弱环节以及存在的其它问题,结合本单元各个复习板块的教材编排情况,拟定具体的复习顺序、重点、课时分配及适当的配套练习。

重视学生对概念、法则、性质的理解和掌握,沟通知识间的联系,使学生对已有知识系统,弄清它们之间的联系,避免混淆。

在计算方面,要注意提高每一个学生的计算能力;在几何知识方面,要进一步发展学生的空间观念;在复习应用题时,要注意提高学生分析问题的能力和解决简单的实际问题的能力。

讲究复习技巧,有效调动学生复习的积极性和主动性,课堂上要让学生多说、多练习,互相促进,切实提高复习的效果。

复习要面向全体学生。对学有余力的学生要让他们通过复习得到进一步的提升;对知识掌握比较薄弱的学生要区别对待,在课堂上还掌握不牢固的内容,要利用课后时间补差,帮助他们掌握好最基本的知识和形成最基本的技能。

四、复习时间:6月2日至考试

五、具体复习内容分析与安排

(一)、数学概念和基本技能的复习(6月2日-----6月5日)

这类习题主要通过填空、判断、选择来进行复习。他主要是考察学生对小学阶段所学的概念、性质、公式、法则理解的基础上能进行综合应用的能力。所以复习时要在学生掌握和理解各种概念、性质、法则、公式的基础上,教师注意帮助学生弄清楚各种概念、法则、性质的联系和区别,然后进行专项练习,让学生见识各种不同题型,从而提高学生解答此类试题的能力。主要的复习方法就是通过典型例题的比较、分析对比后进行专项练习来进行。

如:数与代数中,要帮助学生弄清以下知识

(1)把950084000用亿做单位写作( ),省略万位后面的尾数记做( )。区分改写和省略的区别。

(2)1.497保留整数是( ),保留一位小数是( )保留两位小数是( )在这关键要使学生明白保留小数末尾的0不能去掉的道理。

(3)把一根3米长的铁丝平均分成7段,每段长是这根铁丝的( )/( ),每段长( )米。要向学生讲清分数的意义与求每份数是多少单位一的介定。

(4)0.75=12 ( )=( ):12=75/( )=( )%。帮助学生弄清小数、分数、比、百分数之间的联系,同时要让他们掌握解答这类题的解答方法。

(5)在数的整除中主要是在理解各个概念的基础上通过练习来进行。一个数的十位上是最小的质数,个位上是最小的合数,百分位是最大的一位数,千分位是能同时被2、3整除的数,其他各位都是0,这个数写作( ),精确到十分位是( )。

代数初步知识中

(1)弄清用字母表示数的方法,省略乘号的写法a乘4.5写作ax4.5。省略乘号写作4.5a。

(2)弄清比与比值的区别。1吨:250千克化成最简整数比是( ):( ),比值是( )。

(3)比例的性质反过来应用的情况: 如果ax3=bx5,那么a:b=:() b:a=():()

(4)比例尺的概念的理解,如一种机器零件长3毫米。画在图纸上量的它的长是21厘米,这幅图纸的比例尺是( )。

量与计量

主要让学生弄清楚个计量单位之间的进率和一个单位的实际量是多少。如 :

(1) 学校操场的面积大约是1.2( )。一种集装箱的体积12( )。

(2)3千克50克=( )克 3.5千克=( )千克( )克.

几何初步知识

(1)角的大小与什么有关,如一个角45度,小明用放大镜看这个角是( )度。

(2)面积与周长、体积之间的区别。

(3)等底等高的圆柱和圆锥体积之间的关系。

在帮助学生弄清容易混淆的知识点后进行填空、判断、选择题的专项练习。

(二)操作题(6月8日)

这类试题主要体现在空间图形方面,主要考察学生的动手和实践能力,在试题设计时把常见的图形计算改为先按要求作图,通过“画和量的操作得到数据后再进行相关的计算。如在长方形中

画一条线段,把它分成一个最大的等腰直角三角形和一个梯形。

(1)这个梯形中最大的角是( )度。

(2)请量出相关数据,分别求出三角形和梯形的面积。所以此类试题复习时要力求从问题情景出发建立模型、寻求结论、应用推广的基本过程。

(三)、计算的复习(6月9日---6月10日)

1、口算的复习:注意估算和混合运算顺序的把握。

2、解方程和解比例:注意加减法以三位数为主,乘法因数不超过两位数,除法中除数不超过两位数。同时要让学生掌握解方程和解比例的依据是什么。

3、混合运算,把握好难度,四则混合运算不超过四步,分数四则混合计算中不出现小数和带分数,注意简便方法的应用。

4、列式计算:注意列方程和算术的两种方法应用。

以上试题复习现阶段的关键是如何提高学生计算的准确率方面要多下功夫。

(四)、应用题的复习(6月11日-----6月12日)

根据《课程标准》的要求,整数、小数应用题不超过三步,百分数、分数应用题不超过两步的基本要求:其次应用题的选材要注意联系学生生活实际,呈现方式要注意多样化,开放性,给应用题赋予情感态度价值观的生命因素,适应学生个性差异的心理需求。如甲、乙、丙三人做出租车回家,当行到全程的 时,甲下车;当行到全程的 时,乙下车;丙到中点才下车。他们3人共付车费144元,你认为甲、乙、丙3人怎样付款最合理?简要说明理由。等试题的练习。

1、复合应用题。主要特点是规律性不强,关键要让学生认真读题,采用分析法从问题入手,进行分析解答。

2、列方程解应用题。主要训练学生找准题中的等量关系,然后进行列方程。

3、分数、百分数应用题。找准单位“1”的量,采用学生喜欢的方法进行解答。

4、用比例解应用题。判断成什么比例,然后写出数量关系后列出比例。

5、几何知识应用题。

(1)对平面图形周长和面积的计算要熟记计算公式,注意三角形面积计算时的 ,圆的周长和面积计算时的准确性。

(2)立体图形表面积和体积计算同样要在熟记计算公式的同时要注意长方体、正方体和圆柱体表面积的计算与长方体、正方体和圆柱体、圆锥的体积的计算准确性上多下功夫。

复习中要通过对典型试题的分析和在练习中要重点训练学生说解题思路,对后进生和优生要区别对待,后进生要以基本题型为主,不要提出过高的要求,增加他们的负担。优生要在掌握好基本题型的基础上对综合试题的掌握等措施。提高复习质量和效率。

六、综合模拟测试(6月15至考试)

测试要注意搜集试题的类型上多下功夫,让学生多见识些不同类型的试题,通过测试和对试卷的评讲,提高学生的答题能力,有利于成绩的提高 加油!

一、基本情况。

总人数55,男生28,女生27

二、学习情况

大部分学生对数学比较感兴趣(如郝苏湘、周叶凡等),接受能力较强,学习态度较端正;也有部分学生自觉性不够(如郭冲、郭加林等),不能主动去学习等,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。

以前对知识掌握较好部分是:

1、学生的基础的知识、概念、定义掌握比较牢固。

2、学生的口算、笔算验算及脱式计算较好。

3、学生解答文字题和应用题的思路和步骤清楚。

4、学生能很好的解答几何画图形方面的题目。

5、学生书写较工整美观。

不足之处:

1、学生粗心大意忘写答案。

2、运用知识不够灵活,表现在已掌握的知识,做题目时不能灵活地运用。

教材分析:

这册教材包括下面地些内容:百分数的应用、圆柱和圆锥、比例、确定位置、正反比例、解决问题的策略、统计以及小学六年来所学数学内容的总复习。本册教材的这些内容是在前几册的基础上按照完成小学数学的全部教学任务安排的,着重使学生认识一些常见的立体图形,掌握它们的体积等计算方法,进一步发展空间观念;进一步形成统计的观念,掌握用扇形统计图表示数据整理结果的方法,提高依据统计数据的分析、预测、判断能力;理解比例、正比例、反比例的概念,加深认识一些常见的数量关系,会用比例知识解答比较容易的应用题。然后把小学数学的主要内容加以系统的整理和复习,巩固所学的数学知识,使学生能够综合运用所学的数学知识解决比较简单的实际问题;结合新的教学内容与系统的整理和复习,进一步发展思维能力,培养思维品质,进行思想品德教育。

本册教材中的圆柱和圆锥、比例都是小学数学的重要内容。首先,认识圆柱和圆锥的特征,掌握圆柱和圆锥的一些计算,既可以为进一步学习其他形体的表面积和体积及其计算打好基础,进一步发展空间观念,也可以增强解决问题的策略和方法,逐步增强学生收集、处理信息的意识和能力。最后学习好比例的知识,不仅可以增强学生用数学方法处理数学问题的能力,而且也使学生获得初步的函数观念,为进一步学习相关知识作初步的准备。因此,让学生认识这些内容的概念,学会应用这些概念、方法和计算解决一些实际问题,是教学的重点。

教学目标:

1、使学生应用百分数解决实际问题。理解税率、利率、折扣的含义。

2、使学生在经历观察、操作等活动的过程中认识圆柱和圆锥的特征,能正确地判断圆柱和圆锥,理解、掌握圆柱的表面积、圆柱和圆锥体积的计算方法,会正确地进行计算。

下一页更多精彩“六年级数学教学计划下册”

1.什么叫循环小数? 2.什么是计数单位? 3.什么叫数位?

4.小数的性质是什么? 5.怎样把一个数改写成以“万”或“亿”作单位的数?

6.什么叫整除? 7.什么叫质数?100以内的质数有哪些?

8.什么叫合数? 9.什么叫质因数? 10.什么叫分解质因数?

11.能被2、3、5整除的数各有什么特征? 12.什么叫偶数?

13.什么叫奇数? 14.什么叫倍数? 15.什么叫约数?

16.怎样求两个数的最大公约数和最小公倍数?

17.什么叫加法?什么叫减法?什么叫乘法?什么叫除法?

18.加法各部分之间的关系有哪些?减法各部分之间的关系有哪些?

19.乘法各部分之间的关系有哪些?除法各部分之间的关系有哪些?

20.四则混合运算的运算顺序是怎样的?

21.什么是加法交换律?用字母怎样表示?什么是加法结合律?用字母怎样表示?

22.什么是乘法交换律?用字母怎样表示?什么是乘法结合律?用字母怎样表示?

23.什么是乘法分配律?用字母怎样表示?

24.四则混合运算中,第一级运算有哪些?第二级运算有哪些?

1.什么叫方程? 2.什么叫解方程?

3.什么叫方程的解? 4.路程、速度和时间之间有怎样的关系?

5.工作总量、工作时间和工作效率之间有怎样的关系?

1.什么叫分数? 2.什么叫分数单位? 3.什么叫百分数?

4.分数可以分为哪几种? 5.什么叫真分数? 6.什么叫假分数?

7.什么样的分数叫最简分数? 8.分数与除法有什么样的关系?

9.分数的基本性质是什么? 10.割据分数的基本性质可以做什么?

11.什么叫约分? 12.什么叫通分?

13.怎样把小数化成分数?怎样把分数化成小数?

14.怎样把分数化成百分数?怎样把百分数化成分数?

六年级数学下册复习资料(几何初步知识部分)

1.线段有什么特征?射线有什么特征?直线有什么特征?它们有什么共同的特征?

2.什么叫角?角的大小与什么有关,与什么无关? 3.角按度数可分为哪几类?

4.什么叫锐角?什么叫直角?什么叫钝角?什么叫平角?

5.什么叫垂直?什么叫平行? 6.什么叫三角形?

7.三角形按角分可分为哪几类?按边分可分为哪几类? 8.什么叫轴对称图形?

9.什么是四边形?什么叫平行四边形?什么叫梯形? 10.什么叫周长?

11.长方形和正方形各有什么特征? 12.圆是什么图形?圆有什么特征? 13么叫圆的直径?什么叫半径? 14.什么叫面积?

15.长方形、正方形、圆、半圆的周长各应怎样计算?

16.长方形、正方形、圆、平行四边形、三角形、梯形的面积各应怎样计算?

17.长方体、正方体、圆柱的表面积各应怎样计算?

18.长方体、正方体、圆柱、圆锥的体积各应怎样计算?

15.怎样把小数化成百分数?怎样把百分数化成小数?

16.什么样的分数可以化成有限小数?