梯形的面积计算教学反思
- 作文大全
- 2024-06-21
- 105热度
- 0评论
下面是小编整理的梯形的面积计算教学反思,本文共19篇,欢迎大家阅读分享借鉴,希望对大家有所帮助。
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。 这节课的教学,紧紧抓住“梯形面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把梯形面积转化成了其他的平面图形,进而归纳、概括出梯形的计算方法。这种多角度的思考,既沟通了新旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
这节课我运用了多媒体课件的演示,充分调动了学生的学习兴趣,提高了课堂教学效率,是其他教学手段无法比拟的。
本节课要教会学生一种学习方法,即在求梯形的面积计算公式时,学生在原有知识经验的基础上通过学生自主动手剪拼,运用转化的思考方法,把梯形转化成已学过的图形,然后研究两者之间的联系,从而推导出梯形的面积计算公式。 在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。这节课中我努力激发学生的学习积极性,向学生提供充分从事数学活动的机会,通过“猜想-验证”来展开知识的发生发展过程,促使学生主动探索,学生以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程。
《梯形的面积》这节课的内容是在学生学习习近平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式,因此,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
一、动手操作,感知梯形面积公式的推导过程
在教学中,我让学生动手操作,分别将两个完全一样的梯形拼成一个平行四边形;一个梯形分割成两个三角形和一个梯形沿高的中线分割成两个梯形三种方法,并比较每个梯形与所拼成的图形各部分间的关系,然后学生同时在操作中向学生渗透切割、平移的方法,让学生体验和感知梯形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但课堂上学生活动的时间不够多,这是本课中的缺憾。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨梯形面积公式中的“除以2”是怎么来的?在探讨这个问题时,我采用小组讨论的方式,在讨论中发现问题,解决问题,这样既培养学生的合作精神,又活跃课堂气氛。学生对公式记得也牢固。
三、应用公式解决实际问题
新课程非常重视学生在活动中身临其境的体验。让学生运用所学梯形面积公式解决实际问题。这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了在教学中存在不足。例如学生在回答问题时,采用齐答的办法,为了节省时间没有彻底了解中下学生的掌握情况。今后要注意在教学中避免运用这种方法。还有个别同学发表了自己的.错误想法,我就直接给驳回,没有让学生自己找到自身的错误所在。
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、创设问题情境,激发学生兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、以学生自主学习为主教师为辅的课堂教学理念。
考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。
三、在推导梯形面积计算公式时,我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。
在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。
四、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。
但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
梯形的面积计算教学反思
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。在教学中我充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
回顾整节课有以下几个方面值得反思:
首先:在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,但在动手操作时,学生分工不明确,耽误很多时间,并没有达到预期的教学效果。课前虽有美好的'设想,但教学的对策考虑不周。没有用好探究的素材,没有充分发挥学生的学习积极性。没有让学生体验失败的顿挫,也就品尝不到成功的喜悦。没有让学生享受灵动的课堂。
第二、课前的准备工作不够。如板书的安排应有利于学生归纳、发现。
第三、联系生活部分较少,没有使数学来源于生活,并应用与生活,失去了数学的应用价值。
在梯形的面积计算一课中,我充分利用学生已掌握的平行四边形,三角形面积公式的推导方法,启发学生积极思考。通过复习,让学生明白推导梯形面积公式的方法与推导三角形面积公式的方法相似,都是把不熟悉的平面图形转化为熟悉的平面图形来计算。让学生用两个完全一样的梯形,想办法把它们拼成一个平行四边形,引导学生观察,比较梯形的上底、下底和高与平行四边行的`底和高有什么关系?梯形的面积与平行四边形的面积有什么关系?这环节我是让学生以小组讨论的方式进行的,通过交流,学生很容易得出梯形上底和下底的和,同平行四边行的底相等,梯形的高与平行四边形的高相等,梯形的面积是拼成的平行四边性面积的一半。最后是让学生尝试练习求出梯形的面积,并概括出梯形的面积公式。
本节课主要是让学生自主去探索梯形的面积公式,这样有利于学生思维的发展。但也有一些不足,学生在探索中,对个别学生辅导不够,在今后的教学中,要注重让每一位学生都积极参加到探究的过程中,真正让学生在动中学。
梯形面积的计算是小学生学习多边形面积计算中的一节内容。它与平行四边形、三角形面积的计算一起作为结束直线型面积的计算,进一步学习圆面积和立体图形表面积计算的基础,成为本册教学内容一个重点。五年级的学生,正处于由中向高年级过渡时期,其认识水平和思维能力亦正处于进一步发展和日趋成熟的时期,通过这一部分内容的学习,可进一步发展学生的空间观念,加强学生对图形特征及各种图形之间内在联系的认识,同时可促使他们的抽象概括等逻辑思维能力的发展。在本节的设计中主要突出了以下几点:
1、加强学生动手操作,通过实际操作,既发展了空间观念,又培养了动手操作能力。
2、放手让学生去发现、验证、推导、小结,得出梯形的面积计算公式。突出学生的主体地位,体现自主探索学习模式,有利于培养学生创造性思维能力。
3、培养转化的数学方法,教学中引导学生主动探索所研究的图形与已学过的图形之间有什么样的联系,如何把要学的图形转化为已学的图形,从而使学生自己探索梯形的面积计算公式,理解更为深刻,思维能力亦得到发展。
4、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。
但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。
2、推导梯形的面积计算公式。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的'高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 “教师讲授”为“研究交流”,变“灌输”为“引导”,较好地处理了“主体”和“主导”的关系,有利于培养学生学会学习,学会创造的良好素质。
在学生独立思考,自主探究的基础上,组织学生进行合作交流,这是本节课的重点环节。在教学中,我放手让学生从自己的思维实际出发给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充发展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性,积极性和首创精神,最终达到使学生有效的实现对当前所学知识的意义建构的目的。
1、以学生自主学习为主教师为辅的课堂教学理念。
考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的'学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。
2、以学生的活动为主。实现生生互动。
本节课力求让学生自己去发现和概括梯形的面积公式。使学生在分析,对比中归纳选优;在探究的过程中发展学生思维的创造性。为了达到这一目的,让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“拼、说”的活动过程,让学生在活动中发现,活动中体验,活动中发散,活动中发展。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。
3、使学生的自主探索在时间上给以保证
本节课一系列活动的设计为了学生充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的表现,发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,教师实施点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式。将发散与收敛,直觉和逻辑这种对立统一的思维方式有机的融为主体动态式的思维结构,从而最大限度的扩展其具有张力的思维空间。
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、提出问题,激发兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2 、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的`推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
梯形的面积计算教学反思
本节课的内容是在学生学习了平行四边形的面积、三角形的面积以及梯形的图形特征基础上进行教学的。在前面的学习中,学生已经能够通过拼摆独立推导出图形的面积计算公式,初步领悟了图形转化的数学思想。
成功之处:
多种方法推导梯形的面积,发挥学生的创造力。在教学中首先让学生用自己准备的两个完全一样的`梯形通过拼摆,独立推导梯形的面积计算公式,即用两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是所拼成的平行四边形面积的一半,平行四边形的底等于梯形的上底与下底的和,所以梯形的面积=(上底+下底)×高÷2。然后让学生思考能不能根据一个梯形进行面积公式的推导呢?从而得出以下几种方法:
(1)把梯形剪成一个平行四边形和一个三角形,梯形的面积=平行四边形的面积+三角形的面积。
(2)把梯形剪成两个三角形,梯形的面积=两个三角形的面积之和。
在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解了梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。
不足之处:
由于用多种方法探索梯形的面积计算公式,导致基本方法中出现部分学生不会叙述。
再教设计:
突出基本方法的教学,注意其它方法的时间分配。
《梯形的面积计算》教学反思
教材中对于梯形面积的计算公式的推导只给出了常规的推导方法。如何给学生提供具有挑战性的学习内容,引导学生更深入地进行探索,以更好地培养学生的思维能力,发展学生的智力,这是我们每一位教师都应该积极思考的问题。在教学中,我充分挖掘了教材的思维因素,注意沟通梯形面积计算公式与平行四边形面积计算公式在推导过程上的联系,引导学生多角度地思考问题,给学生的探索、思维提供了一个比较适合的台阶,使学生在学习中,真正体会到了探索过程的艰辛。
在教学中,我紧紧抓住“梯形面积计算公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。学生在原有的三角形和平行四边形等知识经验的基础上通过自主动手剪拼,利用等积变形把梯形面积转化成了各种不同的平面图形,然后研究两者之间的联系,从不同的角度推导出梯形的面积计算公式。这种多角度的思考方法,既沟通了新旧知识的联系,激发了学生的求知欲,又通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程,培养学生获取知识的能力。
数学思想方法是数学的灵魂与精华,教师在日常教学中应当十分注重各种数学思想方法的有机渗透。在这节课中,我较多地运用了“转化”这种数学思想方法,引导学生把新知识转化成旧知识,利用旧知识来解决新问题,学生对这种方法也有很深刻的体验。相信,经常这样有机渗透、恰当孕伏,学生一定会得到更多的锻炼,今后的学习、工作也会受到较好的影响。
学生是学习的主体,教师是学生学习的促进者、参与者与合作者,教师在教学中要注意把学生的学习主动权还给学生,让学习的问题自然生成,再引导学生带着问题从已有知识出发进行探索,当学生在操作、探索、表述等遇到困难的时候,教师只应加以适当指导与点拨,而不是直接给予。但对于自主学习有困难的学生,教师应给予更多的关注,除了鼓励他们积极参与同学的合作学习之外,教师也可给予这部分学生更多的指导和帮助,使他们也能学有所得。
《梯形面积的计算》教学教案设计及反思
马鞍山市博望新区丹阳中心学校 杨协明
教学内容:
教科书88页和89页
教学目标:
(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力以及动手操作能力。
(3)进一步渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教具准备:多媒体课件
教学过程:
一、创设情境,引出问题
教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?
问:同学们这块地是什么图形啊?
生1:这是一个梯形。
问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?
生2:必须先知道梯形的面积。
师:今天我们这节课就来研究“梯形面积的计算”(板书)。
二、探究新知。
(1)、铺垫孕伏。
组织学生回忆平行四边形、三角形面积公式推导的方法及过程,
重点突出旋转、平移、割补的数学思想。
(2)、协作研讨,探求方法
1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。
师:谁能介绍一下这个梯形?
生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!
2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)
生4: (3+5)42=16(平方厘米)
生5: 542+342=16(平方厘米)
生6: (5+3)42=16(平方厘米)
生7: (5-3)42+34=16(平方厘米)
生8: (5+3)(42)=16(平方厘米)
生9: (3+5)24=16(平方厘米)
生10: 34+(5-3)42=16(平方厘米)
师生交流、点评……
3、总结规律,渗透数学思想方法
师:这些方法有什么共同的地方吗?
生11:结果都是16平方厘米。
生12:每种方法的计算过程中都用到3、4、5、2这几个数字。
师:这几个数字和梯形有什么关系吗?
生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。
师:现在谁能猜一猜梯形的面积计算公式是怎样的?
生14:梯形的面积=(上底+下底)高2
师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的'面积计算公式用字母怎样表示?
生15:S=(a+b)h2
三、应用知识,解决问题
1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。
生16:(300+200)100210=2500(棵)
2、学生完成基础变式练习:“做一做”和练习十八的1~3题。
3、提高能力练习:共同探讨练习十八的第四题。
四、知识小结,体验学习的快乐!
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。
《梯形面积的计算》教学案例与反思
教学目标
(1)使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。
(2)使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
(3)培养学生良好的合作探究意识。
教学重点
理解并掌握梯形面积的计算公式。
教学难点
理解梯形面积公式的推导过程。
教学准备
教科书第129页的三组梯形。
学具准备
教科书第129页的三组梯形。
复习导入:
(1)教师谈话:同学们你们还记得三角形面积公式是怎样得来的吗?
(2)今天我们继续应用这种方法来研究梯形面积的计算。(板书课题:梯形面积的计算)
探究新知:
(1)教学例6:
1出示例6:教师谈话:请同学们利用自己手中的梯形拼成平行四边形。(注意:组内所选的`梯形都要齐全)
2小组交流:
(1)说说你是怎么拼成的。
(2)你认为拼成一个平行四边形所需要的两个梯形有什么特点?
要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。
(3)根据数据计算拼成的平行四边形的面积和一个梯形的面积并填表。
启发谈话:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有什么关系?(小组交流)
得出以下结论:
这两个完全一样的梯形,无论是直角梯形、等腰梯形,还是一般的梯形,都可以拼成一个平行四边形。
这个平行四边形的底等于梯形的上底+下底。
这个平行四边形的高等于梯形的高。
因为,每个梯形的面积等于拼成的平行四边形面积的一半。所以,梯形的面积=(上底下底)×高÷2
板书如下:
平行四边形的面积=底×高
2倍↑↓一半||||
梯形的面积=(上底+下底)× 高÷2
(4)用字母表示梯形面积公式:s=(a+b)h÷2
巩固练习:
(1)完成第20页的“试一试”:
1学生自己先动手做一做。
2说一说是怎样做的,并在集体订正的过程中分析学生中的错误情况。
(2)完成第20页“练一练”第1题。
1涂色部分的面积
有多少?
2你是怎样想的?
(3)完成第20页“练一练”第2题。
1让学生说一说每个梯形的上,下底和高各是多少?2学生独立计算,学生板演。
3集体订正后教师追问:用上,下底的和乘高后,为什么还要除以2?
(4)完成第20页“练一练”第三题。
1什么是横截面?横截面是个什么图形?
教师结合直观的图形或教具演示,简单介绍横截面的含义。
2学生独立计算。
全课总结:
教师总结:通过今天的学习有哪些收获?
教学反思:
梯形面积计算是学生经历了平行四边形和三角形面积计算公式推导过程的基础上教学的因此,教学时注意引导学生利用已有的学习经验,自主探索梯形的面积计算公式,例6,先让从附页中选择一组梯形剪下来,想选择哪两个梯形能拼成平行四边形,由于已有了平行四边形的经验,所以学生不仅能顺利地作出选择,而且也能很自然地认识到“梯形的面积是拼成平行四边形面积的一半。”教学中,着重引导学生讨论梯形的上底、下底。高与拼成的平行四边形底和高有什么关系上,从而探索每个梯形的面积与拼成平行四边形面积的关系。通过这样教学。能很轻松地突破本课时的教学重点和难点。
梯形面积计算教学设计
教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。
2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。
3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。
教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。
教学难点: 梯形面积计算方法的推导过程。
教学准备: 多媒体课件
教学过程
一.复习引入。
1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?
2.计算下面图形的面积。(单位:厘米)
3.我们先看第一个图形,它的面积hTtp://是多少?(300平方厘米)
你是怎样计算的?(20×15=300)
你的根据是什么?(平行四边形的面积=底×高)
你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)
4.那么第二个图形的.面积是多少呢?(36平方厘米)
你是怎样计算的?(12×6÷2=36)
你的根据是什么?(三角形的面积=底×高÷2)
你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180?,再沿边平移上去,这样就拼成了一个平行四边形。)
5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!
二.新课传授。
(一)面积计算方法的推导过程。
1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)
你怎么知道它是梯形?(只有一组对边平行)
2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?
3.学生动手操作,分别展示成果。
(1)
请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180?,再沿腰平移上去,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)
(2)
请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)
(3)
请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个三角形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)
4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?
5.你是怎么得出这个规律的?
教学内容:
小学数学第七册74—75页的内容
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点、难点:
理解梯形面积计算公式的推导,并能应用公式正确的进行计算。
教具准备:
课件。
教学过程:
(一)复习旧知,做好铺垫。
1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。
2、练习(出示)
口答下面各图形的面积。(单位:厘米)
(二)创设情景,提出问题
师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)
师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)
师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)
(三)小组学习,解决问题。
师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)
合作要求:
(1)想一想:我们已经学过哪几种图形的面积公式?
(2)试一试:把梯形转化成已经学过的图形。(任选一种)
(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?
(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。
全班交流时,教师根据学生说的方法用课件演示转化及推导过程。
教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)
师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)
师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。
课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?
让学生独立计算,在集体订正。
师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。
(四)应用拓展,巩固知识。
师:下面我们来做练习吧。
1、一☆练习
a、课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。
b、课件出示:P75做一做,由学生独立完成,集体订正。
c、课件出示:判断
1)两个梯形能拼成一个平行四边形。
2)平行四边形的面积是梯形面积的2倍。()
让学生独立判断,并说明理由。
2、二☆练习
a、课件出示:
一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。
b、课件出示:
我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:
(顶层根数+底层根数)×层数÷2
想一想是什么道理,并算出图中圆木的总根数。
3、三☆练习
课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。
学生独立解答,再交流。
(五)小结全课,结束教学
让学生讲讲这节课的收获,并布置作业。
有时间的话做“思考”
在下图的梯形中,剪下一个最大的.三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
教学目标:
1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。
2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。
3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。
教学重点:
发现、理解和应用梯形面积计算公式。
教学难点:
理解公式的推导过程
教具准备:
计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。
学具准备:
每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。
教学过程:
一、迁移诱导,激发参与兴趣
1、启发学生回忆三角形的面积推导公式。
2、板书课题,引入新课。
二、实验操作,引导参与探究
1、转化
学生分成四人小组进行学习。
独立拿出准备好的各种梯形,拼成学过的图形。
学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。
2、观察
学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。
板书如下:梯形面积,拼成的平行四边形面积的一半
平行四边形的底,梯形是上底+下底
平行四边形的高,梯形的高
3、推导
学生分组讨论,教师巡视,注意点拨。
学生反馈,教师注意用规范的语言进行调控。
板书如下:
平行四边形面积=底×高
梯形的面积=(上底+下底)×高÷2
S=(a+b)×h÷2
提问:计算梯形的面积为什么除以2?
三、反馈调节,巩固参与成果
1、引导实际应用,巩固梯形面积公式
2、分层训练,培养能力
3、发展提高,深化知识
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的'基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。 由于所有学生已经有了推导三角形面积公式的经验,因此在推导梯形面积计算公式时,我想放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,()学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
反思整个课堂教学过程,还是存在着一些问题。如在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,在原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从教学的实际效果上看,学生最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我想还是得结合本班学生的实际,合理安排,及时调整课堂设计,多考虑学生的思维特点,这样效果肯定会更好。
《梯形面积》 教学反思
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的`推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
这节课上完以后我觉得有成功,也有一些不足:
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
反思整个课堂教学过程,还是存在着一些问题。
首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,
再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?
我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。
一、提出问题,激发兴趣
我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
★
★
★
★
★
★
★
★
★
★