人教版函数的教学设计
- 文档
- 2024-06-17
- 116热度
- 0评论
下面就是小编给大家带来的人教版函数的教学设计,本文共19篇,希望能帮助到大家!
教材分析
本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。
本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。
按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:
1、知识与技能
通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2、过程与方法
通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。
3、情感态度价值观
(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。
实验研究:
作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:
(一)、利用二次函数解决实际问题的易错点:
①题意不清,信息处理不当。
②选用哪种函数模型解题,判断不清。
③忽视取值范围的确定,忽视图象的正确画法。
④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。
(二)、解决问题的突破点:
①反复读题,理解清楚题意,对模糊的信息要反复比较。
②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。
③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。
④注意检验,养成良好的解题习惯。
因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。
教学目标
1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。
2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。
3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。
教学重点与难点
教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。
教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。
学生学情分析
我所代班级的学生是高一新生, 他们在初中已学过二次函数的简单性质与图像,知道二次函数在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。
教法分析
根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。
教学过程
(一)复习旧知
回忆二次函数的图像与性质:
1. 图像:
2. 定义域:
3. 单调性:
4. 最值:
【设计意图】复习旧知,引入新课。
(二)自主探究
探究1:定轴定区间最值问题
分别在下列范围内求函数f(x)=x2-2x-3的最值:
规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。
【设计意图】
通过探究
1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。
(三)合作探究(含参二次函数最值求解问题 )
探究2:动轴定区间最值问题
求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。
【设计意图】
通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。
变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。
【设计意图】
通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。
规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,
注意做到“不重不漏”。
探究3:定轴动区间最值问题
求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。
变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.
【设计意图】
通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。
规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。
(四)知识小结
本节课研究了二次函数的三类最值问题:
(1) 定轴定区间最值问题; (2) 动轴定区间最值问题; (3) 定轴动区间最值问题.
核心思想是判断对称轴与区间的相对位置, 应用数形结合、分类讨论思想求出最值。
【设计意图】
归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。
(五)结束语
数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!
(六)课后作业
1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。
2. 求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。
3. 求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。
【设计意图】
学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。
一、说课内容:
九年级数学下册第27章第一节的二次函数的概念及相关习题 (华东师范大学出版社)
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:抽象出实际问题中的二次函数关系。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,ky=kx ,ky= , k0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。
例1、(1)圆的半径是r(cm)时,面积s (cm2)与半径之间的关系是什么?
解:s=0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x2+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)2
=100(x2+2x+1)
= 100x2+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)2+1 (2) s=3-2t2
(3)y=(x+3)2- x2 (4) s=10r2
(5) y=22+2x (6)y=x4+2x2+1(可指出y是关于x2的二次函数)
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
五、评价分析
本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。
一、教材分析
1.教材的地位和作用
(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。
2.课标要求:
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。
④会根据二次函数的性质解决简单的实际问题。
3.学情分析:
(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。
(2)学生的分析、理解能力较学习新课时有明显提高。
(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
(4)学生能力差异较大,两极分化明显。
4.教学目标
认知目标
(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。
能力目标
提高学生对知识的整合能力和分析能力。
情感目标
制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。
5.教学重点与难点:
重点:(1)掌握二次函数y=图像与系数符号之间的关系。
(2) 各类形式的二次函数解析式的求解方法和思路。
(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。
难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.
二、教学方法:
1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。
3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
三、学法指导:
1.学法引导
“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。
2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”
4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
四、教学过程:
1、教学环节设计:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
本节课的教学设计环节:
创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。
自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。
运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。
安排三个层次的练习。
(一)从定义出发的简单题目。
(二)典型例题分析,通过反馈使学生掌握重点内容。
(三)综合应用能力提高。
既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
(四)方法与小结
由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
2、作业设计:(见课件)
3、板书设计:(见课件)
五、评价分析:
本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。
教学目标:
会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:
重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:
一、例题精析,强化练习,剖析知识点
用待定系数法确定二次函数解析式.
例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)
(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)
当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)
强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;
(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用
例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交
教学目标
1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点
2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题
3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学重点和难点
重点:用三种方式表示变量之间二次函数关系
难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学过程设计
一、从学生原有的认知结构提出问题
这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念
1、用函数表达式表示
☆做一做书本P56矩形的周长与边长、面积的关系
鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系
2、用表格表示
☆做一做书本P56填表
由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系
3、用图象表示
☆议一议书本P56议一议
关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势
☆做一做书本P57
4、三种方法对比
☆议一议书本P58议一议
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。
目标:
1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。
2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。
重点难点:
重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。
难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。
教学过程:
一、创设问题情境
如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?
分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。
如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2 (a<0) (1)
因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。
因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2
因此,所求函数关系式是y=-0.2x2。
请同学们根据这个函数关系式,画出模板的轮廓线。
二、引申拓展
问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?
让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。
问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?
分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。
二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。
解:设所求的二次函数关系式为y=ax2+bx+c。
因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,
所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。
由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解这个方程组,得a=-15b=45 所以,所求的二次函数的关系式为y=-15x2+45x。
问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?
问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?
(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)
请同学们阅渎P18例7。
三、课堂练习:P18练习1.(1)、(3)2。
四、综合运用
例1.如图所示,求二次函数的关系式。
分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。
解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。
设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到64a+8b=-44a-2b=-4 解这个方程组,得a=-14b=32
所以,所求二次函数的关系式是y=-14x2+32x+4
练习: 一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。
五、小结:
二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。
六、作业
1.P19习题 26.2 4.(1)、(3)、5。
2.选用课时作业优化设计。
【二次函数教学设计(精选8篇)】
教学设计思想:本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。
教学目标:
1.知识与技能
会运用二次函数计其图像的知识解决现实生活中的实际问题。
2.过程与方法
通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。
3.情感、态度与价值观
通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。
教学重点:解决与二次函数有关的实际应用题。
教学难点:二次函数的应用。
教学媒体:幻灯片,计算器。
教学安排:3课时。
教学方法:小组讨论,探究式。
教学过程:
第一课时:
Ⅰ.情景导入:
师:由二次函数的一般形式y= (a0),你会有什么联想?
生:老师,我想到了一元二次方程的一般形式 (a0)。
师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。
现在大家来做下面这两道题:(幻灯片显示)
1.解方程 。
2.画出二次函数y= 的图像。
教师找两个学生解答,作为板书。
Ⅱ.新课讲授
同学们思考下面的问题,可以共同讨论:
1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?
2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?
生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。
生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。
师:说的很好;
教师总结:一般地,如果二次函数y= 的`图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。
师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。
[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
问题:已知二次函数y= 。
(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?
(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?
x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1
②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?
x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70
y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190
(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。
(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。
第一问很简单,可以请一名同学来回答这个问题。
生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。
师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。
教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?
生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。
类似的,我们得出方程精确到百分位的正根是0.62。
对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。
最后师生共同利用求根公式,验证求出的近似解。
教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。
Ⅲ.练习
已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。
板书设计:
二次函数的应用(1)
一、导入 总结:
二、新课讲授 三、练习
第二课时:
师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?
生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。
师:好,看这样一个问题你能否解决:
活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。
回答下面的问题:
1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。
2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。
3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?
4.你能画出这个函数的图像,并借助图像说出y的最大值吗?
学生思考,并小组讨论。
解:已知周长为40m,一边长为xm,看图知,另一边长为 m。
由面积公式得 y= (x )
化简得 y=
代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。
画函数图像:
通过图像,我们知道y的最大值为5。
师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?
生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。
师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。
总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:
(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。
(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。
师:现在利用我们前面所学的知识,解决实际问题。
活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?
教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。
解答过程(板书)
解:(1)当BC=x时,AC=2-x(02)。
(2)S△CDE= ,S△BFG= ,
因此,S= + =2 -4x+4=2 +2,
画出函数S= +2(02)的图像,如图34-4-3。
(3)由图像可知:当x=1时, ;当x=0或x=2时, 。
(4)当x=1时,C点恰好在AB的中点上。
当x=0时,C点恰好在B处。
当x=2时,C点恰好在A处。
[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。
练习:
如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。
(1)Rt△ABP与Rt△PCQ相似吗?为什么?
(2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少?
小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。
板书设计:
二次函数的应用(2)
活动1: 总结方法:
活动2: 练习:
小结:
第三课时:
我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。
师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。
(幻灯片显示交通事故、紧急刹车)
师:你知道两辆车在行驶时为什么要保持一定的距离吗?
学生思考,讨论。
师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。
请看下面一个道路交通事故案例:
甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙= 。
教师提问:1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?
2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?
学生思考!教师引导。
对于二次函数S甲=0.1x+0.01x2:
(1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。
(2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?
(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?
生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。
生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。
同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。
下面看下面的这道例题:
当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:
v/(km/h) 40 60 80 100 120
s/m 2 4.2 7.2 11 15.6
(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。
(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:
(3)求当s=9m时的车速v。
学生思考,亲自动手,提高学生自主学习的能力。
教师提问,学生回答正确答案,教师再进行讲解。
课上练习:
某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。
(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。
(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?
(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?
课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。
板书设计:
二次函数的应用(3)
一、案例 二、例题
分析: 练习:
总结:
数学网
教学目标
(一)教学知识点
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
(二)能力训练要求
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
(三)情感与价值观要求
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.
教学重点
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
教学难点
领会反比例函数的意义,理解反比例函数的概念.
教学方法
教师引导学生进行归纳.
教具准备
投影片两张
第一张:(记作5.1A)
第二张:(记作5.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
Ⅱ.新课讲解
[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
[师]大家还记得函数的定义吗?
[生]记得.
在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.
[师]大家能举出实例吗?
[生]可以.
例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.
等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.
[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.
[师]请看下面的问题.
电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
R/Ω20406080100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
请大家交流后回答.
[生](1)能用含有R的代数式表示I.
由IR=220,得I= .
(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.
(3)变量I是R的函数.
由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.
[师]这位同学回答的非常精彩,下面大家再思考一个问题.
舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.
[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.
投影片:(5.1A)
京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.
[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.
[师]从上面的两个例题得出关系式
I= 和t= .
它们是函数吗?它们是正比例函数吗?是一次函数吗?
[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.
[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?
[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).
[师]很好.
一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.
从y= 中可知x作为分母,所以x不能为零.
3.做一做
投影片(5.1B)
1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
3.y是x的反比例函数,下表给出了x与y的一些值:
x-2-1
13
y
2-1
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.
[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.
[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.
[生]设反比例函数的表达式为
y= .
(1)当x=-1时,y=2;
∴k=-2.
∴表达式为y=- .
(2)当x=-2时,y=1.
当x=- 时,y=4;
当x= 时,y=-4;
当x=1时,y=-2.
当x=3时,y=- ;
当y= 时,x=-3;
当y=-1时,x=2.
因此表格中从左到右应填
-3,1,4,-4,-2,2,- .
Ⅲ.课堂练习
随堂练习(P131)
Ⅳ.课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.
Ⅴ.课后作业
习题5.1
Ⅵ.活动与探究
已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?
分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.
解:由题意可知y-1= =k(x+2).
当x=1时,y=4.
所以3k=4-1,
k=1.
即表达式为y-1=x+2,
y=x+3.
由上可知y是x的一次函数.
板书设计
《二次函数》教学设计
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学难点:求出函数的自变量的取值范围。
教学过程:
一、问题引新
1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m) 1 2 3 4 5 6 7 8 9
BC长(m) 12
面积y(m2) 48
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少? y=x(20-2x)
二、提出问题,解决问题
1、引导学生看书第二页 问题一、二
2、观察 概括
y=6x2 d= n /2 (n-3) y= 20 (1-x)2
以上 函数关系式有什么共同特点? (都是含有二次项)
3、二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
4、课堂练习
(1) (口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
(2).P3练习第1,2题。
五、小结 叙述二次函数的定义.
六、作业:课本第14页习题1.2
七、板书
第二课时:26.1 二次函数(2)
教学目标:
1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。
教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象
教学难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质。
教学过程:
一、问题引新
1,同学们可以回想一下,一次函数的性质是什么?
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?
3.一次函数的图象是什么?二次函数的图象是什么?
二、学习新知
1、例1、画二次函数y=2x2 与y=2x2的图象。(有学生自己完成)
解:(1)列表:在x的取值范围内列出函数对应值表:
(2)描点 (3)连线
x … -3 -2 -1 0 1 2 3 …
y … 9 4 1 0 1 4 9 …
找一名学生板演画图
提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,)
2、归纳:
抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的顶点.顶点坐标(0,0)
3、运用新知
(1).观察并比较两个图象,你发现有什么共同点?又有什么区别?
(2).课件出示:在同一直角坐标系中, y=2x2与y=-2x2的图象,观察并比较
(3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示)
让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
当XO时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______
三、总结:函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。
四、课堂练习:练习册P 练习1、2、3、4。
五、作业: 1.画出函数y=1/2x2的图象?
2.写出函数y=ax2具有哪些性质?
第三课时:二次函数(33)
教学目标:
1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。
教学过程:
一、提出问题导入新课
1.二次函数y=2x2的图象具有哪些性质?
2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、学习新知
1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
小组相互说说(一人记录,其余组员补充)
2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做
在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?
四、作业: 在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像
五:板书
第四课时26.1 二次函数(4)
教学目标:
1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。
2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解其性质,理解二次函数
y=a(x-h)2的图象与二次函数y=ax2的图象的关系。
重点:会用画出二次函数y=a(x-h)2的图象,理解其性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。
难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系。
教学过程:
一、提出问题导入新课
1.在同一直角坐标系内,画出二次函数y=-12x2,y=-12x2-1的图象,并回答:
(1)两条抛物线的位置关系。
(2)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?
二、学习新知
1、探究新知:学生画出二次函数y=2(x-1)2和y=2x2的图象,并加以观察
教师巡视、指导。分组讨论,交流合作
2.、学生汇报:函数y=2(x-1)2与y=2x2的图象,开口方向、对称轴和顶点坐标;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象怎样平移得到的。
师:由函数y=2x2的性质总结函数y=2(x-1)2的性质
3.让学生完成以下填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。
4、做一做
在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?
让学生讨论、交流,举手发言,归纳:在y=2(x+1)2中,当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。
4、课堂练习: P11练习1、2、3。
三、小结:谈谈本节课的收获和体会。
四、作业
1.P19习题26.2 1(2)。
五、板书
第五课时26.1 二次函数(5)
教学目标:
1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。
2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
3.让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
重点:,理解函数y=a(x-h)2+k的性质以及图象与y=ax2的图象之间的关系,
难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质
一、提出问题导入新课
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)
2.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?这就是本节要学习得内容。
二、学习新知
1、画图:在同一直角坐标系中画出函数y=2(x-1)2与y=2x2 y=2(x-1)2+1的图象,看看它们之间有何的关系? 在学生画函数图象时,教师巡视指导;
出示例3:你能发现函数y=2(x-1)2+1有哪些性质?
教师可组织学生分组讨论,互相交流,让各组代表发言,
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。
2:出示4 (P10)
3、课堂练习:不画图像说说函数y=2(x-1)2-2与y=2(x-1)2的异同点
三、小结
1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?
2.谈谈你的学习体会。
四、作业:
1.巳知函数y=-12x2、y=-12x2-1和y=-12(x+1)2-1
(1)在同一直角坐标系中画出三个函数的图象;
(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;
(3)试说明:分别通过怎样的平移,可以由抛物线y=-12x2得到抛物线y=-12x2-1和抛物线y=12(x+1)2-1;
思考:函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?
五、板书:
第六课时26.1 二次函数(6)
教学目标:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标。
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是教学的难点。
教学过程:
一、提出问题导入新课
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?具有哪些性质?
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
3.不画出图象,你能直接说出函数y=-1/2x2-6x+21的图象的开口方向、对称轴和顶点坐标吗?通过今天的学习你就明白了
二、学习新知
1、思考: 像函数 y=-4(x-2)2+1很容易说出图像的顶点坐标,函数y=-1/2x2-6x+21能画成y=a(x-h)2+k 这样的形式吗?
2、师生合作探索: y=-1/2x2-6x+21 变成 y=a(x-h)2+k的过程
3、做一做
(1). 通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?
在学生做题时,教师巡视、指导; 让学生总结配方的方法;思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?
以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,汇报结果:
y=ax2+bx+c(配方变形的过程略)
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-b2a,4ac-b24a)
(2)、P12练习第1、2、3、4题
4、待定系数法求二次函数解析式(引导学生自学看书12页)
5、练一练 P13练习第1、2
三、小结: 通过本节课的学习,你学到了什么知识?有何体会?
四、作业:
1.填空:
(1)抛物线y=x2-2x+2的顶点坐标是_______;
(2)抛物线y=2x2-2x-52的开口_______,对称轴是_______;
(3)二次函数y=ax2+4x+a的最大值是3,则a=_______.
2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。
3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=3x2+2x; (2)y=-x2-2x
(3)y=-2x2+8x-8 (4)y=12x2-4x+3
4.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质
五:板书
第七课时26.2 用函数的观点看一元二次方程(1)
教学目标:
1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。
3.进一步培养学生综合解题能力,渗透数形结合思想。
重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题。
难点:进一步培养学生综合解题能力,渗透数形结合的思想。.
教学过程:
一、引导学生看书16页 导入新课
像书中这样的问题,我们常常会遇到,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,我和同学们共同研究,尝试解决以下几个问题。
二、探索问题,学习新知
1、问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是
y=-x2+2x+45。
(1)喷出的水流距水平面的最大高度是多少?
(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?
思路如下:
(1).让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y=-x2+2x+45最大值,问题(2)就是求如图(2)B点的横坐标;
(2)学生解答,教师巡视指导;一两位同学板演,教师点评。
2、出示例题:画出函数y=x2-x-34的图象。 如图(4)所示。
教师引导学生观察函数图象,得到图象与x轴交点的坐标分别是(-12,0)和(32,0)。
让学生完成解答。教师巡视指导并讲评。
教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。
3、应用新知
根据图(4)象回答下列问题。
(1)当x取何值时,y<0?当x取何值时y>0,?
(当-12<x<32时,;当x<-12或x>32时,y>0)
y<0 即x2-x-34<0的解集是什么? y>0 即x2-x-34>0的解集是什么?)
想一想:二次函数与一元二次不等式有什么关系?
让学生类比二次函数与一元二次不等式方程的关系,讨论、交流:
(1)从“形”的方面看,二次函数y=ax2+bJ+c在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标.即为一元二次不等式ax2+bx+c<0的解。
(2)从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为一元二次不等式ax2+bx+c>0的'解;当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为一元二次不等式ax2+bc+c<0的解。这一结论反映了二次函数与一元二次不等式的关系。
三、小结:
1.通过本节课的学习,你有什么收获?有什么困惑?
2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程
ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况。
四、作业:
1. 二次函数y=x2-3x-18的图象与x轴有两交点,求两交点间的距离。
2.已知函数y=x2-x-2。
(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出图象
(2)观察图象确定:x取什么值时,①y=0,②y>0;③y<0。
五、板书:
第八课时:26.2 用函数的观点看一元二次方程(2)
教学目标:
1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解。
2.让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解。
3.提高学生综合解题能力,渗透数形结合思想。
重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。
难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。
教学过程:
一、复习巩固 导入新课
1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?
2.画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解。
学生练习的同时,教师巡视指导,根据学生情况进行讲评。 (解:略)
二、探索问题 学习新知
1、问题1:初三(3)班学生在上节课的作业中出现了争论:求方程x2=12x十3的解时,几乎所有学生都是将方程化为x2-12x-3=0,画出函数y=x2-12x-3的图象,观察它与x轴的交点,得出方程的解。唯独小刘没有将方程移项,而是分别画出了函数y=x2和y=12x+2的图象,如图(3)所示,认为它们的交点A、B的横坐标-32和2就是原方程的解.
思考:
(1). 这两种解法的结果一样吗? 小刘解法的理由是什么?
(让学生讨论,交流,发表不同意见,并进行归纳。)
(2).函数y=x2和y=bx+c的图象一定相交于两点吗?你能否举出例子加以说明?
(3)函数y=x2和y=bx+c的图象的交点横坐标一定是一元二次方程x2=bx+c的解吗?
(4).如果函数y=x2和y=bx+c图象没有交点,一元二次方程x2=bx+c的解怎样?
2、做一做(验证一下问题1的思路是否正确)
利用图像解下列方程的解,并检验小刘的方法是否合理。
(1)x2+x-1=0(精确到0.1); (2)2x2-3x-2=0。
注意:①要把(1)的方程转化为x2=-x+1,画函数y=x2和y=-x+1的图象;
②要把(2)的方程转化为x2=32x+1,画函数y=x2和y=32x+1的图象;
3、运用新知
已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m)。
(1)求这两个函数的关系式;
(2)当x取何值时,抛物线与直线相交,并求交点坐标。
解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m=1
所以y1=x+1,P(3,4)。 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有
4=18-24+k+8 解得 k=2 所以y1=2x2-8x+10
(2)依题意,得y=x+1y=2x2-8x+10 解这个方程组,得x1=3y1=4 ,x2=1.5y2=2.5
所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5)。
三、小结: 1.如何用画函数图象的方法求方程韵解?
2.你能根据方程组:y=x2y=bx+c的解的情况,来判定函数y=x2与y=bx+c图象交点个数吗?请说说你的看法。
四、作业:
1. 利用函数的图象求下列方程的解:
(1)x2+x-6=0;,(2) y=x2+xy=5x-4
2.填空。
(1)抛物线y=x2-x-2与x轴的交点坐标是______,与y轴的交点坐标是______。
(2)抛物线y=2x2-5x+3与y轴的交点坐标是______,与x轴的交点坐标是______。
4.已知抛物线y1=x2+x-k与直线y=-2x+1的交点的纵坐标为3。
(1)求抛物线的关系式;
(2)求抛物线y=x2+x-k与直线y=-2x+1的另一个交点坐标.
五、板书:
第九课时26.1 实际问题与二次函数
教学目标:
1.能根据实际问题列出函数关系式、
2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。
3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。
重点:根据实际问题建立二次函数的数学模型,应用函数的性质解答数学问题
难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,
教学过程:
一、复习旧知 导入新课
1.写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=6x2+12x; (2)y=-4x2+8x-10
以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?
有了前面所学的知识,现在就可以应用二次函数的知识去解决生活中的实际问题。
二、学习新知
1、应用二次函数的性质解决生活中的实际问题
出示例1、要用总长为60m的篱笆围成一个矩形的场地,矩形面积S随矩形一边长L的变化而变化,当L是多少时,围成的矩形面积S最大?
解:设矩形的一边为Lm,则矩形的另一边为(30-L)m,由于L>0,且30-L>O,所以O<L<30。
围成的矩形面积S与L的函数关系式是
S=L(30-L)
即S=-L2+30L
(有学生自己完成,老师点评)
2、引导学生自学P23页例2 质疑 点评
3、练一练:
(1)、某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大?
请同学们完成解答; 教师巡视、指导; 师生共同完成解答过程:
解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。
商品每天的利润y与x的函数关系式是: y=(10-x-8)(100+1OOx)
即y=-1OOx2+1OOx+200 配方得y=-100(x-12)2+225
因为x=12时,满足0≤x≤2。 所以当x=12时,函数取得最大值,最大值y=225。
所以将这种商品的售价降低0.5元时,能使销售利润最大。
小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:
(1)先分析问题中的数量关系,列出函数关系式;
(2)研究自变量的取值范围;
(3)研究所得的函数;
(4)检验x的取值是否在自变量的取值范围内,并求相关的值:
(5)解决提出的实际问题。
4、综合练习:P26习题第1、2、3题。
三、小结: 1.通过本节课的学习,你学到了什么知识?存在哪些困惑?
2.谈谈你的收获和体会。
四、作业:
1.已知一个矩形的周长是24cm。(1)写出矩形面积S与一边长a的函数关系式。(2)当a长多少时,S最大?
2.填空:
(1)二次函数y=x2+2x-5取最小值时,自变量x的值是______;
(2)已知二次函数y=x2-6x+m的最小值为1,那么m的值是______。
3.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。
(1)要使鸡场的面积最大,鸡场的长应为多少米?
(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?
(3)比较(1)、(2)的结果,你能得到什么结论?
选做题:用6m长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?
五、板书
第十课时26.1实际问题与二次函数
教学目标:
1.能根据实际问题列出函数关系式、
2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。
3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。
重点:根据实际问题建立二次函数不同的数学模型,应用函数的性质解答数学问题
难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,
教学过程:
一、复习旧知 导入新课
(1)建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA。O恰好在水面中心,布置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+52x+32,请回答下列问题:
(1)花形柱子OA的高度;
(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?
(2).如图(7),一位篮球运动员跳起投篮,球沿抛物线y=-15x2+3.5
二、学习新知
1、引导学生自学P24页例2(既探究2) 质疑 点评
出示例3 P25 引导学生应用不同的方法去构建数学模型
重点讲解例3
2、练一练:
(1).如图是抛物线拱桥,已知水位在AB位置时,水面宽46米,水位上升3米就达到警戒线CD,这时水面宽43米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?
三、小结:
1.通过本节课的学习,你学到了什么知识?存在哪些困惑?
2.谈谈你的收获和体会。
四、作业:
一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?
五、板书
第十一课时《二次函数》小结与复习1
教学目标:
1、理解二次函数的概念,掌握二次函数y=ax2的图象与性质;
2、会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向;
3、能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。
重点:用配方法求二次函数的顶点、对称轴,由图象概括二次函数y=ax2图象的性质。
难点:二次函数图象的平移。
教学过程:
一、结合例题,强化练习,梳理知识点
1.二次函数的概念,二次函数y=ax2 (a≠0)的图象性质。
例1:已知函数 是关于x的二次函数,
求:(1)满足条件的m值;
(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?
(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?
学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。
抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。
2.强化练习;已知函数 是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。
3.用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,
例2:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。
学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。充分讨论后让学生代表归纳解题方法与思路。
4.教师归纳点评:
(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: y=ax2+bx+c————→y=a(x+b2a)2+4ac-b24a
(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。
(3)抛物线的平移抓住关键点顶点的移动。
5.综合应用。
例3:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1)。
(1)求直线和抛物线的解析式;
(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。
6. 强化练习:
(1)抛物线y=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。
(2)通过配方,求抛物线y=12x2-4x+5的开口方向、对称轴及顶点坐标再画出图象。
(3)函数y=ax2(a≠0)与直线y=2x-3交于点A(1,b),求:
a和b的值
抛物线y=ax2的顶点和对称轴;
x取何值时,二次函数y=ax2中的y随x的增大而增大,
求抛物线与直线y=-2两交点及抛物线的顶点所构成的三角形面积。
二、课堂小结
1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。
三、作业:
填空。
1.若二次函数y=(m+1)x2+m2-2m-3的图象经过原点,则m=______。
2.函数y=3x2与直线y=kx+3的交点为(2,b),则k=______,b=______。
3.抛物线y=-13(x-1)2+2可以由抛物线y=-13x2向______方向平移______个单位,再向______方向平移______个单位得到。
4.用配方法把y=-12x2+x-52化为y=a(x-h)2+k的形式为y=_____,其开口方向______,对称轴为______,顶点坐标为______。
第十二课时《二次函数》小结与复习2
教学目标:
1、会用待定系数法求二次函数的解析式,
2、能结合二次函数的图象掌握二次函数的性质,
3、能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:
一、结合例题,强化练习,梳理知识点
1、用待定系数法确定二次函数解析式.
例1:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生讨论,四个小题应选择什么样的函数解析式?并让学生阐述解题方法。分组完成,点评解题要点。
教师归纳:二次函数解析式常用的有三种形式:
(1)一般式:y=ax2+bx+c (a≠0)
(2)顶点式:y=a(x-h)2+k (a≠0)
(3)两根式:y=a(x-x1)(x-x2) (a≠0)
2、强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;
(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、综合练习
1、出示例2:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标,
(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。
学生活动:学生小组讨论交流。
教师归纳:
2、强化练习;已知二次函数y=2x2-(m+1)x+m-1。
(1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。
(2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。
(3)若函数图象的顶点在第四象限,求m的取值范围。
三、课堂小结
同位同学相互说说二次函数有哪些性质
归纳二次函数三种解析式的实际应用。
四、作业:
一、填空。
1. 如果一条抛物线的形状与y=-13x2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是_____。
2.已知抛物线y=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=______。
二、选择。
1.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是( )
A.a>0,bc>0 B. a<0,bc<0 C. a>O,bc<O D. a<0,bc>0
2.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为( )
A.y=-x2+2x+3 B. y=x2-2x-3
C.y=-x2-2x+3 D. y=-x2-2x-3
3.若二次函数y=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( )
A.a+c B. a-c C.-c D. c
4.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中: ①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是( )
A.4个 B.3个 C. 2个 D.1个
三、解答题。
已知抛物线y=x2-(2m-1)x+m2-m-2。
(1)证明抛物线与x轴有两个不相同的交点,
(2)分别求出抛物线与x轴交点A、B的横坐标xA、xB,以及与y轴的交点的纵坐标yc(用含m的代数式表示)
(3)设△ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2、试将计算结果填写在下表的空格中,
2、x的值是否可以任意取?有限定范围吗?
3、我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,
y是x的函数,试写出这个函数的关系式,对于1、可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式、
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件、该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0、1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1、商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4、x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5、若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2、二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项、
四、课堂练习
1、(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(2)y=2x3-3x2 (4)y=5x4-3x+1
2、P3练习第1,2题。
五、小结
1、请叙述二次函数的定义、
2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:
正比例函数教学设计
11.2 一次函数
11.2.1 正比例函数
教学目标
1.认识正比例函数的意义.
2.掌握正比例函数解析式特点.
3.理解正比例函数图象性质及特点.
4.能利用所学知识解决相关实际问题.
教学重点
1.理解正比例函数意义及解析式特点.
2.掌握正比例函数图象的性质特点.
3.能根据要求完成转化,解决问题.
教学难点
正比例函数图象性质特点的掌握.
教学过程
ⅰ.提出问题,创设情境
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
3.这只燕鸥飞行1个半月的行程大约是多少千米?
我们来共同分析:
一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
25600÷(30×4+7)≈200(km)
若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
y=200x(0≤x≤127)
这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
y=200×45=9000(km)
以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的`对应规律的一个模型.
类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
1.圆的周长l随半径r的大小变化而变化.
2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化.
3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化.
答应:1.根据圆的周长公式可得:l=2 r.
2.依据密度公式p= 可得:m=7.8v.
3.据题意可知: h=0.5n.
4.据题意可知:t=-2t.
我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数.
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图象中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。下面是关于反比例函数教学设计,请参考!
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。而y=k/x有时也被写成xy=k或y=k・x^(-1)。表达式为:x是自变量,y是因变量,y是x的函数。
反比例函数的教学设计
教学目标
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力.
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题,理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.
教学重点
用反比例函数的知识解决实际问题.
教学难点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题.
教学方法
教师引导学生探索法.
教具准备
投影片四张
第一张:(记作5.3A)
第二张:(记作5.3B)
第三张:(记作5.3C)
第四张:(记作5.3D)
教学过程
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用.
[师]很好.学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学.
一、新授:
1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?
答:P=600s (s0),P 是S的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:P=3000Pa
(3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压U=36V , I=60k
2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
R() 3 4 5 6 7 8 9 10
I(A )
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;
1.反比例的应用教学设计
2.函数图像教学设计
3.反比的函数教学设计
4.六年级数学反比例教学设计
5.二次函数线段最值教学设计
6.任意角的三角函数教学设计
7.高中数学函数教学设计
8.二次函数概念教学设计
9.关于《长城》 教学设计
10.关于将心比心教学设计
教学目标:
一、知识与技能
1、学会观察、分析函数图像信息.
2、体会数形结合思想,并利用它解决问题,提高解决问题的能力.
二、过程与方法
1、提高识图能力、分析函数图像信息的能力.
2、体会数形结合思想,并利用它解决问题,提高解决问题的能力.
三、情感态度与价值观
1、体会数学方法的多样性,提高学习兴趣.
2、认识数学在解决问题中的重要作用,从而加深对数学的认识.
教学重点:
观察分析图像信息.
教学难点:
分析概括图像中的信息.
教学方法:
整节课应以“开放、合作、探究”为基本特征,给学生思考的空间和表现的机会,让学生在一个较为轻松的环境中去体验数学学习带来的乐趣,构建充满活力的课堂氛围。
教具准备:
多媒体演示.
教学过程:
1、提出问题,创设情境
我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表达出来,然而可以通过图来直观反映。例如用心电图表示心脏生物电流与时间的关系.
即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.
我们这节课就来解决如何画函数图像的问题及如何解读函数图像信息.
2、导入新课
我们先来看这样一个问题:
正方形的边长x与面积s的函数关系是什么?其中自变量x的取值范围是什么?计算并填写下表:
生:函数关系式为s=x2,因为x代表正方形的边长,所以自变量x>0,将每个x的值代入函数式即可求出对应的s值.
师:好!如果我们在直角坐标系中,将你所填表格中的自变量x及对应的函数值s当作一个点的横坐标与纵坐标,即可在坐标系中得到一些点.
大家思考一下,表示s与x的对应关系的点有多少个?如果全在坐标中指出的话是什么样子?可以讨论一下,然后发表你们的看法,建议大家不妨动手画画看.
生:这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.
师:很好!这样我们就得到了一幅表示s与x关系的图。图中每个点都代表s的值与x的值的一种对应关系。如点(1,1)表示x=1时,s=1、
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。上图中的曲线即为函数s=x2(x>0)的图像.
函数图像可以数形结合地研究函数,给我们带来便利.
[活动一]
活动内容设计:
下图是自动测温仪记录的图像,它反映阿城的春季某天气温T如何随时间t的变化而变化。你从图像中得到了哪些信息?
活动设计意图:
1、通过图像进一步认识函数意义.
2、体会图像的直观性、优越性.
3、提高对图像的分析能力、认识水平.
4、掌握函数变化规律.
教师活动:
引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及对应时间,在某些时间段的变化趋势,认识图像的直观性及优缺点,总结变化规律……
学生活动:
在教师引导下,合作探究,归纳总结.
活动结论:
1、一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t的函数.
2、这天中凌晨4时气温最低为―3℃,14时气温最高为8℃.
3、从0时至4时气温呈下降状态,即温度随时间的增加而下降。从4时至14时气温呈上升状态,从14时至24时气温又呈下降状态.
4、这天最高气温与最低气温之差为11℃。
5、我们可以从图像中很直观地看出一天中气温变化情况及任一时刻的气温大约是多少.
[活动二]
活动内容设计:
下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家。 其中x表示时间,y表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。
观察下面的图像,你能发现哪些结论?
活动设计意图:
书中例题是以5个问题的形式给出的,这里以开放式出现,这样的设计可以充分调动学生的热情和兴趣,巩固知识的同时彰显了学生的个性,并给学生设置了充分发挥的空间,在兼顾全体学生的同时,分散了难点。
教师活动:
引导学生分析图像、寻找图像信息,特别是图像中两段平行于x轴的线段的意义.
学生活动:
在教师引导下,积极思考、大胆参与、归纳总结.
活动结论:
1、菜地离小明家1、1千米A,小明走到菜地用了15分钟.
2、小明给菜地浇水用了10分钟.
3、菜地离玉米地0。9千米。 小明从菜地到玉米地用了12分钟.
4、小明给玉米地锄草用了18分钟.
5、玉米地离小明家2千米。 小明从玉米地走回家用了25分钟。 所以平均速度为2÷25=0。08(千米/分钟).
师:我们通过两个活动已学会了如何观察和分析图像信息,那么在观察图像时应该注意什么问题呢?
生:弄清横、纵坐标表示的意义,自变量的取值范围,图像中函数随着自变量变化的规律,抓住一些特殊点。
[活动三]
活动内容设计:
出示相关的各类函数图像问题。
活动设计意图:
通过各类图像习题的训练,让学生进一步体会图像的直观性,并熟练地找到图像中重要的信息。
例1:小明今天到学校参加运动会,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1 000米的学校.下列图像中,能反映这一过程的是( ) .
例2:李林和弟弟进行百米赛跑,李林比弟弟跑得快,如果两人同时起跑,李林肯定赢.现在李林让弟弟先跑若干米,图中分别表示两人的路程与李林追赶弟弟的时间的关系,由图中信息可知,下列结论中正确的是( ) .
A。李林先到达终点
B。弟弟的速度是8米/秒
C。弟弟先跑了10米
D。弟弟的速度是10米/秒
例3:下图表示一辆汽车的速度随时间变化的情况:
①汽车行驶了多长时间?它的最高时速是多少?
②汽车在哪些时间段保持匀速行驶?时速分别是多少?
③出发后8分钟到10分钟之间可能发生了什么情况?
④用自己的语言大致描述这辆汽车的行驶情况。
例4:小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕耽误上课,故加快速度继续匀速行驶赶往学校.下列行驶路程(米)与时间(分)的函数图像中,符合小明骑车行驶情况的图像大致是( )。
例5:龟兔赛跑的故事,领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但已经来不及了,乌龟先到达了终点……现在用直线和折线分别表示二者所走的路程,t为时间,则下列图像中:
① 哪个表示兔子,哪个表示乌龟?
② 兔子休息了多长时间?
③ 从中你能悟出什么人生道理?
④将龟兔赛跑的故事改编并画出相应的图像。
3。 课时小结
本节通过两个活动,学会了分析图像信息,解答有关问题.这样我们又一次利用了数形结合的思想.
4、课后作业
P104 练习2、3。
一、教材分析
这节课的内容是八年级(第二学期)第二十章“一次函数”的第二节“一次函数的图像”的第三课时, 内容是结合一次函数图像研究一次函数与一元一次方程以及一元一次不等式之间的关系。
一次函数解析式实际上也是二元一次方程,若已知y的值,则可得关于x的一元一次方程.若已经y大于(或小于)某个常数,则可得关于x的一元一次不等式.因此一次函数与一元一次方程、不等式有密切的关系.
学生在本节课之前已经学习过一次函数及其图像,一元一次方程,一元一次不等式,通过本节的教学,可加强这些知识间的联系,发挥函数对相关内容的统领作用,能用一次函数可以把以前学习的方程和不等式等不同的数学概念统一起来,从而深化学生对方程与不等式的理解,使新旧知识融会贯通,促进学生良好知识结构的形成。同时也为进一步学习“三个二次之间的关系”打下基础。
二、教学目标分析
1.能借助一次函数的图像认识一元一次方程的解、一元一次不等式的解集,理解一元一次方程、一元一次不等式与一次函数之间的内在联系。
2.经历由具体到抽象、由直观感知到得出一般结论的认知过程,体会数形结合的数学思想,提高由图像获取有用信息的能力以及分析与解决问题的能力。
3.经历探索三个“一次”之间的内在联系的过程,感受知识之间的普遍联系,体会等与不等的辩证关系,更好地认识和掌握事物运动和变化的规律.
教学重点、难点
能以函数的观点认识一元一次方程的解、一元一次不等式的解集。
三、教学问题诊断
在学习本课内容时,学生已经掌握了一元一次方程,一元一次不等式,一次函数等知识,会画一次函数的图像,会用代数方法解一元一次不等式。大部分的学生正在艰难的由形象思维向抽象思维发展。观察力偏重于第一印象,仍用自己原有的认识与知识结构作出判断,不会自觉利用直角坐标系从函数的这种数形对应角度出发考虑,很难利用图像中的信息分析和解决问题。基于上述情况,预测学生在理解一次函数与一元一次不等式之间的关系时会产生困难。
四、教法特点
1.突出数形结合的数学思想
由于数和形是数学中主要研究对象,它们各有所长,因此若能将二者结合起来,则可发挥各自的优势.正如著名数学家华罗庚所说:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.本节课内容是渗透数形结合思想的良好载体,因此在教学设计过程中,我们力求让学生充分体会这一数学思想方法.
本节课首先从引入情景出发,由两个已知点,既可直接画出一次函数的图像,引入课题;呈现问题一之后,由于有了图像,学生容易从图像角度考虑问题,但从图像只能得出近似值(这里体现了“形缺数时难入微”),要得出精确值必须采用代数方法,从而想到应从数的角度来考虑问题.
在一次函数与一元一次方程关系讨论结束之后提出问题二,在问题一讨论的基础上,学生已经知道一次函数图像与x轴交点的横坐标,因此从形的角度马上可以直观地得出结果,这里的求解过程又体现了数形结合思想(先用代数方法求出交点坐标,然后根据图形得出结论);从形的角度讨论结束之后,再提出还有没有其它方法,学生自然会想到从数的角度来考虑.
在以上探究过程中,教师有意识地渗透,学生亲历与感悟,尤其是方法的选择注重合理自然、水到渠成,可以使学生进一步明晰数与形各自的优点,从而使学生充分体会数形结合思想.
2.创设实际问题情景
数学来源于生活,数学应用于生活。世博是今年大家十分关注的一个话题,许多学生已经是多次进入园区参观,大温度计上的数学问题来自于学生真实的日常生活,有利于激发学生学习数学的兴趣,大家在不知不觉中进入了今天学习的内容。
在温度计的背景下,提出温度的两种度量制度。围绕这一情景提出了如下三个问题:第一个问题是画出一次函数图像,这既复习了旧知,又为新知的学习创造了条件;第二个问题是当华氏度为0时,摄氏度为多少?对这一问题从“数”与“形”两个方面入手分析研究,得出了这个一次函数与相应一元一次方程之间的关系,然后推广到一般情形;第三个问题是当华氏度大于(小于0)时,相应摄氏度应在什么范围内取值?对这一问题的研究得出了这个一次函数与相应一元一次不等式之间的关系。
3.充分展现知识的形成过程
本节课的教学设计遵从由特殊到一般、由具体到抽象、由直观感知到得出一般结论这样的认识过程。关于一次函数与一元一次方程关系的探讨,先从实际问题入手,从形与数两个角度进行研究,然后根据这一研究过程得出对于特殊的一次函数,它与一元一次方程的关系,然后将这一结论推广到一般情形。关于一次函数与一元一次不等式关系的探讨,也采用类似的处理方法。在本节课的教学设计中,尤其注重生成性,体现出数学内在的合谐与自然。对于函数与方程关系的讨论,由于有了图像但没有给出函数解析式,先形后数自然而然;而对于函数与不等式的关系,在前面研究的基础上,函数图像与x轴交点横坐标已经知道,从形的角度考虑也非常自然;若无前面这一基础,显然应该从数的角度来加以讨论更为自然.
4.通过问题驱动来激发思维
首先,由问题引发学生的思考,体会一次函数与一元一次方程之间的关系。这一部分的学习,比较多的学生能够通过观察得出具体的结论:一次函数图像与x轴交点坐标的横坐标就是此函数对应的一元一次方程的解。反之亦然。这一部分内容的学习不仅是本节课的重点之一,为接下来的难点突破打下了基础。
接下来,继续由问题引发学生的思考,这一部分的教学是本节课的重难点,相比较前一部分(一次函数与一元一次方程之间的关系)这部分的内容对于学生来说更抽象,更难以理解。为了帮助学生理解这部分内容,我设计了这几个环节:
(1)通过思考问题2,学生找到图像中符合条件的那一部分,为下面的从具体到抽象提供载体;在这里问题的设计具有层次性,学生在问题中得到适当的引导与启发,学生的积极性会很高,对于他们的回答我也都将给予充分的肯定与表扬。
(2)从具体问题入手,讨论一次函数图像与一元一次不等式之间的关系。为了使得学生深入理解这一问题且考虑到学生群体学习能力的参差不齐,利用几何画板动态演示,追踪符合条件的点的轨迹,使学生从图像上直观获取符合条件的点的横坐标的取值范围这一信息。
(3)在最后抽象到一般时采用先小组讨论再全班交流的形式,这样安排使学生形成自己对数学知识的理解并且进行了有效的学习,培养了学生数形结合的思想以及在交流中发展学生的合作意识和交流能力。
五、预期效果分析
总之,本节课采用观察、探究、交流、归纳等多种教学方式,并配合多媒体操作演示、师生互动,给学生以充分展示自我的机会和平台,从而调动学生主动参与课堂教学的积极性,激发学生学习数学的热情,培养了学生自主探究的能力,使之真正成为了学习的主人。然而,如何很好地调控学生,激发每一位同学的学习潜能,在今后的教学中还有待努力去探索。
[关于函数的教学设计]
一、教学目标
(1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。
(2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;
(3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、教学的重点和难点
教学重点:正比例函数的性质及其应用。
教学难点:发现正比例函数的性质
三、教学方法与学法指导教学方法:
引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:引导学生学会观察、归纳的学习方法。
四、教具准备
电脑PPT,洋葱学院电脑版
五、教学过程:
(一)温故知新,引入课题
温故:正比例函数的图像是什么?
答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线
(二):知新:
在两个直角坐标系内,分别画出下列每组函数的图象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x
引导学生观察图像,看看每组直线分布的特征先让学生在坐标纸上画出上述函数的图象,之后利用洋葱学院播放《正比例函数的性质》,以动态的演示画出函数图象,吸引学生的学习兴趣,让他们能查漏补缺,找出自己所画的图象与视频中的图象有什么不同?
观察图像,思考问题:
1.图像经过的象限与k的取值有何联系?不够明确。图像经过的象限与k的取值(特别是符号)有何联系?
2.对其中的某一个正比例函数图像(例如y=3x),当x增大时,函数值y怎样变化?x减小呢?是不是要提出减小?请斟酌。
3.你从中得出什么规律?
第一个问题:图像经过的象限与k的取值有何联系?
估计生:发现第一组的五条直线都经过第一象限和第三象限;而第二组的五条直线都经过第二和第四象限。
师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致
估计生:第一组k>0,而第二组k
师:很好,谁能把他们联系一下?
估计生:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
师:那么是不是对于所有的正比例函数的图像都有:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k的值都小于零的。】(这个演示过程可以登录xx这个网址,进行演示,让学生更加直观的观察到k的正负对函数图象的影响)
下面由老师来证明这个性质:(由观察猜想到逻辑证明)
板书:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
证明:当k>0时,若x>0,则kx>0,即y>0∴点(x,y)在第一象限
若x
当x=0时,则kx=0,即y=0∴点(x,y)即原点。
即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。同理,当k
我们看到:当k>0时,函数图像的走向很像汉字笔画里的“提”,当k<0时,走向是“捺”。这样更形象,容易记忆。
PPT展示正比例函数的性质:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。
师:现在我们做个小练习,由正比例函数解析式(根据k的正负),来判断其函数图像的走向。
y=-xy=xy=xy=-xy=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)
鼓励学生踊跃抢答。
反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x增大时,函数值y怎样变化?x减小呢?)播放洋葱视频。
板书:当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;(即“提”的走向)当k<0时,自变量x逐渐增大时,函数值y反而减小。(即“捺”的走向)
师:小练习:由函数解析式,请你说出它的变化情况:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)
鼓励学生踊跃抢答。
第三个问题:你从中得出什么规律?
归纳总结(由学生回答)正比例函数y=kx(k≠0)的性质:
当k>0时,函数图像经过第一、三象限;自变量x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)
当k
归纳为一句话,正比例函数图象的性质归根结底看k的符号。
即:k>0提(一、三,增大);
k<0捺(二、四,减小)
(三)应用
1、正比例函数的解析式是___________,它的图像一定经过___________。
2、y=-的图像经过第___________象限。
3、已知ab<0,则函数y=x的图象经过___________象限。
4、已知正比例函数y=(2a+1)x,若y的值随x的增大而减小,求a的取值范围。
5、当m为何值时,y=mxm2-3是正比例函数,且y随x的增大而增大。
思考题:
①已知正比例函数y=(m+1)xm2+1,那么它的图象经过哪些象限。
②分别说明下列各正比例函数,当m为何值时,y随x的增大而增大,或y随x的增大而减小?
a、y=(m2+1)x
b、y=m2x
c、y=(m+1)x
(四)小结这节课让我们知道了……
以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络(先播放视频,之后PPT总结本节课的重点)。
(五)作业89页练习题
(六)课后反思
1.成功之处:本节课的重点是正比例函数的性质及其应用。难点是发现正比例函数的性质,通过教师的引导,洋葱视频的引导,启发调动学生的'积极性,让学生自主的去分析发现函数的性质。教师的主导作用与学生主体地位达到了统一。使本节课的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生利用数形结合的思想方法解决问题的能力;本节课的教学注重由传授单一的知识技能,转向为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握。
2.不足之处:
(1)在探索正比例函数性质时,没有预估到学生画函数图象费时太长,导致后面的教学过程比较紧张。
(2)在应用新知这一环节中对学生习题的反馈情况了解的不够全面。
(3)为激发学生自主学习的兴趣,教师的课堂语言应精炼。
3、改进措施:
(1)要充分的相信学生总结规律的能力。在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题。
(2)在学生明确正比例函数的性质后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确的掌握学生对新知识的掌握情况。
(3)在性质的发现总结过程中,应让学生自己独立完成,教师不必着急帮助总结,这样可以更加集中学生的注意力,激发学习兴趣。
在实际教学中为了体现学生学习的主体性,和教师教学的主导性,我花费了很多时间在学生的动手操作、小组讨论上,但如何能更好的处理好学生探索过程中的引导和讲解,还需要在实际教学中不断地反思才能不断地进步。
第一课时
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的'知识解决一些实际问题。
过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的.重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学目标
知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的'作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点
教学难点 1) 重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
教学过程
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
教学目标:
1、知识与能力目标:
(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
教学重点和难点
重点:进一步掌握反比例函数的概念、图像、性质并正确运用。
难点:反比例函数性质的灵活运用。数形结合思想的应用。
教学方法:
探究——讨论——交流——总结
教学媒体:
多媒体课件。
教学过程:
一、知识梳理:
同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?
课件展示:
1、反比例函数的意义
2、反比例函数的图象与性质
3、利用反比例函数解决实际问题
二、合作交流、解读探究
(一)与反比例函数的意义有关的问题
课件展示:
忆一忆:什么是反比例函数?
要求学生说出反比例函数的意义及其等价形式
巩固练习:课件展示:
1、下列函数中,哪些是反比例函数?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、写出下列问题中的函数关系式,并指出它们是什么函数?
⑴当路程s一定时,时间t与平均速度v之间的关系。
⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。
3、若y=为反比例函数,则m=______
4、若y=(m-1)为反比例函数,则m=______ 。
(二)运用反比例函数的.图象与性质解决问题
1、反比例函数的图象是
2、图象性质见下表(课件展示):
3、做一做(课件展示)
(1)函数y=的图象在第______象限,当x
(2)双曲线y=经过点(-3,______)。
(3)函数y=的图象在二、四象限内,m的取值范围是______ 。
(4)若双曲线经过点(-3,2),则其解析式是______.
(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。
(三)综合运用(课件展示)
一次函数的图像y=ax+b与反比例函数y=交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围
三、随堂练习
见课件
四、小结
1、反比例函数的意义
2、反比例函数的图象与性质
五、作业:
配套练习22页21、22题
★
★
★
★
★
★
★
★
★
★