数学建模论文模板范文
- 文档
- 2024-08-25
- 114热度
- 0评论
下面是小编给大家带来数学建模论文模板范文,本文共19篇,一起来阅读吧,希望对您有所帮助。
利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题审题题设条件代入数学模型求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型实际问题
一次函数成本、利润、销售收入等
二次函数优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数细胞分裂、生物繁殖等
三角函数测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当数学建模论文格式模板以及要求数学建模论文格式模板以及要求。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明数学建模论文格式模板以及要求论文。
(七)数学建模论文模板
1. 论文标题
摘要
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
论文标题:xxxxxxx
摘要
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、变量说明
为了使读者能更充分的理解你所做的工作,
对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:
①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。
②要与数学中的习惯相符,不要使用程序中变量的写法
比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量
再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)
四、模型的建立与求解
这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:
①一定要有分析,而且分析应在所建立模型的前面;
②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;
③关系式一定要明确;思路要清晰,易读易懂。
④建模与求解一定要截然分开;
⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的写出其步骤;
⑥结果必须放在这一部分的结果中,不能放在附录里。
⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!
⑧程序不能代替求解过程和结果!
⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!
⑩每个问题和问题之间以及5个小点之间都必须空一行。
问题一:
1.建模思路:
①对问题的详尽分析;
②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味
③完成内容阐述所必需的公式推导、图表等
2.模型建立:
建立模型并对模型作出必要的解释
对于你所建立的模型,最好能对其中的每个式子都给出文字解释。
3.求解方法:
给出你的求解思路,最好能想写算法一样,写出你的算法。
4.求解结果
【摘 要】文章阐述了我们应用数学的发展现状,分析了应用数学建模的意义,提出在应用数学中渗透建模思想的措施,以期能够对当前应用数学建模思想的发展提供参考。
【关键词】应用数学; 数学建模;建模思想
将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。
1 当前应用数学的发展现状以及未来发展趋势
数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。
2 开展数学建模的意义
数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。
3 渗透建模思想的对策措施
3. 1充分重视建模的桥梁作用
建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。
3. 2将建模的方法以及相关理论引入到数学教学中来
我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。
3. 3积极参加“数学模型”课等相关课程与活动
数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。“数学实验” 课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。
上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说“,数学建模”包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。
数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。
因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指“对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成”[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。
而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。
同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。
经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。
要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。
案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。
其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。
还要强调如何用求解结果去解释实际现象即检验模型。
另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。
最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的“满堂灌”,也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。
每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。
如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。
学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。
这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。
以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。
笔者负责数学建模竞赛培训近20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。
多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。
又如 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。
参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的`创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。
因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,,1:237.
[2]许梅生,章迪平,张少林。
数学建模的认识与实践[J].浙江科技学院学报,,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,,12:79-83.
[4]饶从军,王成。
论高校数学建模教学[J].延边大学学报(自然科学学版),,32(3):227-230.
[5]段璐灵。
数学建模课程教学改革初探[J].教育与职业,,5:140-142.
[6]郝鹏鹏。
工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
[论文关键词]建模地位 建模实践 建模意识
[论文摘要]建模能力的培养,不只是通过实际问题的解决才能得到提高,更主要的是要培养一种建模意识,解题模型的构造也是一条培养建模方法的很好的途径。
一、建模地位
数学是关于客观世界模式和秩序的科学,数、形、关系、可能性、最大值、最小值和数据处理等等,是人类对客观世界进行数学把握的最基本反映。数学方法越来越多地被用于环境科学、自然资源模拟、经济学和社会学,甚至还有心理学和认知科学,其中建模方法尤为突出。数学教育家汉斯·弗赖登塔尔认为:“数学来源于现实,存在于现实,并且应用于现实,数学过程应该是帮助学生把现实问题转化为数学问题的过程。”《新课程标准》中强调:“数学教学是数学活动,教师要紧密联系学生的生活环境,要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”
因此,不管从社会发展要求还是从新课标要求来看,培养学生的建构意识和建模方法成了高中数学教学中极其重要内容之一。在新课标理念指导下,同时结合自己多年的教学实践,我认为:培养建模能力,不能简单地说是培养将实际问题转化为数学问题的能力,课堂教学中更重要的是要培养学生的建模意识。以下我就从一堂习题课的片段加以说明我的观点及认识。
二、建模实践
片段、用模型构造法解计数问题(计数原理习题课)。
计数问题情景多样,一般无特定的模式和规律可循,对思维能力和分析能力要求较高,如能抓住问题的条件和结构,利用适当的模型将问题转化为常规问题进行求解,则能使之更方便地获得解决,从而也能培养学生建模意识。
例1:从集合{1,2,3,…,20}中任选取3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?
解:设a,b,c∈N,且a,b,c成等差数列,则a+c=2b,即a+c是偶数,因此从1到20这20个数字中任选出3个数成等差数列,则第1个数与第3个数必同为偶数或同为奇数,而1到20这20个数字中有10个偶数,10个奇数。当第1和第3个数选定后,中间数被唯一确定,因此,选法只有两类:
(1)第1和第3个数都是偶数,有几种选法;(2)第1和第3个数都是奇数,有几种选法;于是,选出3个数成等差数列的个数为:2=180个。
解后反思:此题直接求解困难较大,通过模型之间转换,将原来求等差数列个数的问题,转化为从10个偶数和10个奇数每次取出两个数且同为偶数或同为奇数的排列数的模型,使问题迎刃而解。
例2:在一块并排10垄的田地中,选择2垄分别种植A,B两种不同的作物,每种作物种植一垄,为了有利于作物生长,要求A,B两种作物的间隔不小于6垄,则不同的选垄方法共有几种(用数字作答)。
解法1:以A,B两种作物间隔的垄数分类,一共可以分成3类:
(1)若A,B之间隔6垄,选垄办法有3种;(2)若A,B之间隔7垄,选垄办法有2种;(3)若A,B之间隔8垄,选垄办法有种;故共有不同的选垄方法3+2+=12种。
解法2:只需在A,B两种作物之间插入“捆绑”成一个整体的6垄田地,就可以满足题意。因此,原问题可以转化为:在一块并排4垄的田地中,选择2垄分别种植A,B两种作物有 种,故共有不同的选垄方法=12种。
解后反思:解法1根据A,B两种作物间隔的垄数进行分类,简单明了,但注意要不重不漏。解法2把6垄田地“捆绑”起来,将原有模型进行重组,使有限制条件的问题变为无限制条件的问题,极大地方便了解题。
三、建模认识
从以上片段可以看到,其实数学建模并不神秘,只要我们老师有建模意识,几乎每章节中都有很好模型素材。
现代心理学的研究表明,对许多学生来说,从抽象到具体的转化并不比具体到抽象遇到的困难少,学生解数学应用题的最常见的困难是不会将问题提炼成数学问题,即不会建模。在新课标要求下我们怎样才能有效培养学生建模意识呢?我认为我们不仅要认识到新课标下建模的地位和要有建模意识,还应该要认识什么是数学建模及它有哪些基本步骤、类型。以下是对数学建模的一些粗浅认识。
所谓数学建模就是通过建立某个数学模型来解决实际问题的方法。数学模型可以是某个图形,也可以是某个数学公式或方程式、不等式、函数关系式等等。从这个意义上说,以上一堂课就是很好地建模实例。
一般的数学建模问题可能较复杂,但其解题思路是大致相同的,归纳起来,数学建模的一般解题步骤有:
1.问题分析:对所给的实际问题,分析问题中涉及到的对象及其内在关系、结构或性态,郑重分析需要解决的问题是什么,从而明确建模目的。
2.模型假设:对问题中涉及的对象及其结构、性态或关系作必要的简化假设,简化假设的目的是为了用尽可能简单的数学形式建立模型,简化假设必须基本符合实际。
3.模型建立:根据问题分析及模型假设,用一个适当的数学形式来反映实际问题中对象的性态、结构或内在联系。
4.模型求解:对建立的数学模型用数学方法求出其解。
5.把模型的数学解翻译成实际解,根据问题的实际情况或各种实际数据对模型及模型解的合理性、适用性、可靠性进行检验。
从建模方法的角度可以给出高中数学建模的几种重要类型:
1.函数方法建模。当实际问题归纳为要确定某两个量(或若干个量)之间的数量关系时,可通过适当假设,建立这两个量之间的某个函数关系。
2.数列方法建模。现实世界的经济活动中,诸如增长率、降低率、复利、分期付款等与年份有关的实际问题以及资源利用、环境保护等社会生活的热点问题常常就归结为数列问题。即数列模型。
3.枚举方法建模。许多实际问题常常涉及到多种可能性,要求最优解,我们可以把这些可能性一一罗列出来,按照某些标准选择较优者,称之为枚举方法建模,也称穷举方法建模(如我们熟悉的线性规划问题)。
4.图形方法建模。很多实际问题,如果我们能够设法把它“翻译”成某个图形,那么利用图形“语言”常常能直观地得到问题的求解方法,我们称之为图形方法建模,在数学竞赛的图论中经常用到。
从数学建模的定义、类型、步骤、概念可知,其实数学建模并不神秘,有时多题一解也是一种数学建模,只有我们认识到它的重要性,心中有数学建模意识,才能有效地引领学生建立数学建模意识,从而掌握建模方法。
在新课标理念指导下,高考命题中应用问题的命题力度、广度,其导向是十分明确的。因为通过数学建模过程的分析、思考过程,可以深化学生对数学知识的理解;通过对数学应用问题的分类研究,对学生解决数学应用问题的心理过程的分析和研究,又将推动数学教学改革向纵深发展,从而有利于实施素质教育。这些都是我们新课标所提倡的。也正是我们数学教学工作者要重视与努力的。
参考文献:
[1]董方博,《高中数学和建模方法》,武汉出版社.
[2]柯友富,《运用双曲线模型解题》,中学数学教学参考,(6).
[3]陆习晓,《用模型法解计数问题》,中学教研,2006(9).
[4]汤浩,《回归生活,让数学课堂“活”起来》,数学教育研究,2006(7)
摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模
1.数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3.数学建模在高职数学教学中的应用
3.1利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
3.2利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
3.3提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4.提高高职数学教学数学建模思想的方式
4.1教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
4.2重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
4.3重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。
关键词:数学建模;计算机应用;融合
1.数学建模与计算机技术概述
目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。就数学建模来看,计算机在此方面的作用不言而喻。对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。
2.计算机技术在数学建模中的应用
计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。
2.1计算机技术辅助确立数学建模思想
对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决某个问题,但是在建模的辅助下一切问题迎刃而解。
2.2计算机技术促进数学建模结果求解
对于数学建模,其属于一项系统性工程,整个过程工作量较多。在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。在计算数学模型时,不仅速度快,准确度也很高,如表1给出了手动解30维线性方程组和计算机解30维方程组的时间,手动所用时间是计算所用时间的1200倍。
同时,对于一些借助纸和笔而无法实现的计算,通过计算机能够较快实现,其中主要涉及到相关的编程、绘图等操作。
3.数学建模与计算机应用融合的优势
计算机在数学建模领域拥有极为重要的优势与作用。如计算机的计算速度快、可以辅助作图,甚至可以辅助做立体图形。同时,借助于计算机也能够使得模型得以进一步完善,也就是說两者彼此之间相辅相成。
3.1计算机使数学建模多样化
数学建模的出现,主要是为了便于处理同工程或者科研相关的问题的,和试题类有着较大区别。其所处理问题具有一定的特性,即围绕日常具体问题展开,科研背景突出,需要的知识结构复杂,涉及的范围庞大,因素多且难,非常规特征明显,缺乏有效的处理措施,涉及数据多,要选择的算法亦十分繁琐,得出的结果存在波动性,要有限定的前提,通常仅可获取近似解。而计算机的出现,则在一定程度上使这种情况得到缓解。是数学建模多样化,令设计领域更加宽泛,如数学建模可以模范人类大脑的记忆功能。
3.2计算机使数学模型求解更为简单
计算机在数学建模中的应用使得数学模型求解更为简单体现在以下几个方面:
(1)计算量问题得到解决。以前计算量大是制约数学建模发展的主要因素之一,现在在计算机的帮助下,只要模型完善,计算量大已经不是问题。如德国的神威计算机,计算速度达到了12.5亿亿次/秒。
(2)可视化功能使抽象问题具体化。现代计算机都有强大的作图功能,会使数学模型中的一些抽象概念、问题解决过程都变得可视化。图表的制作更是非常简单。
3.3计算机利用数学建模寻求最优解成为可能
在3.1节中已经提到,在计算机没有应用到数学建模中之前,很多数学模型的解只是近似解,连精确解都谈不上,更不用说是最优解。其主要原因是模型本身的计算量太大,笔和纸这两样工具更不能在短时间内攻下数学模型计算这块,此外笔和纸根本不可能完成某些图表的制作也是原因之一。计算机有效的解决了这两个问题,这就会使得数学模型得到精确解。在求得精确解的基础之上还可以进一步寻求最优解,因为数学模型的解往往是多解的,不是唯一解。
4.总结
数学模型,其主要是通过使用相应的数学语言来对实际问题进行相应的表示,也就是说,模型的实质主要是为了有效解决生活中的实际问题。通过借助于计算机能够使得复杂问题得以有效简化,对于促进社会发展起到了重要作用。因而,在未来发展中数学建模也将会像计算机一样得到广泛重视。目前,对于教育界而言,其主要问题在于理论与实践相脱节。我们的教学越来越形式、抽象。在教材中,充斥着大量的定理、理论证明等等,但是并没有将其与实际生活相结合,而对于借助相应的数学教学来实现脑力发展的系统化更是微乎其微。将计算机与数学建模相结合,这是未来数学领域发展所必须经历的一个过程。
参考文献:
[1]李大潜.数学建模与素质教育[J].中国大学教育,20xx (10):41-43.
[2]姜启源.数学实验与数学建模[J].数学的实践与认识,20xx,31(5):613-617.
概率论与数理统计是一门研究随机现象及其统计规律的数学学科,它是高等院校各专业开设的重要的基础数学课程之一。以下是“概率统计中融入数学建模思想的教学探索论文”,希望能够帮助的到您!
如何运用该课程的理论知识解决实际问题具有非常重要的研究意义。每年一次的全国大学生数学建模竞赛是目前各高校的规模较大的课外科技活动之一。数学建模是一门运用数学工具和计算机技术,通过建立数学模型来解决现实中各种实际问题的新学科。它通过调查,收集数据、资料,观察和研究其固有的内在规律,提出假设,经过抽象简化,建立反映实际问题的数学模型,即将现实问题转化为数学问题。纵观历年数学建模竞赛试题,像高等教育的学费问题、北京奥运会人流分布、DNA序列分类问题、DVD在线租赁问题及医院病床的合理安排等问题都不同程度地涉及到了概率论与数理统计的相关知识。笔者多年来一直为理工科的本科生讲授概率论与数理统计课程,并每年辅导和指导全国大学生数学建模竞赛,所以与同事们一直都在探索如何深化概率论与数理统计这门课程的教学改革,使其与数学建模思想能有机结合。本文将从以下几方面进行探讨研究。
一、概率统计教学中融入数学建模思想的重要性
传统的概率论与数理统计课程的教学,可以简单地归纳为:数学知识+例子说明+解题+考试。这种模式虽然使学生在一定程度上掌握了基础知识,提高了计算能力,也学会了运用所学知识解决课后作业和应付考试。但也不难看出,这种教学方式与实际严重脱节,学生学会了书本知识,但却不知在所学专业中该如何运用,这不仅与素质教育的宗旨相违背,也极大地削弱了学生学习这门课程的能动性,从而也影响了教学效果。数学建模的指导思想恰恰在于培养学生运用所学理论知识来解决现实实际问题。这不仅仅是这门课程对学生的教育问题,更是顺应当前素质教育和教学改革的需要问题。
二、在课堂教学中融入数学建模思想
对于讲授概率论与数理统计这门课程的教师来说,有着非常重要的任务,那就是如何教好这门课程,即如何使学生通过对这门课程的学习而增强其对概率统计方法的理解与实际应用能力。
1.教学内容上数学建模思想的渗透。众所周知,教师对教学内容的把握起着不容忽视的作用。有效的教学是依赖于教师对该课程的内容有着全面的和深刻的理解。概率统计中的一些概念、性质、模型的应用确实有些难度,在日常教学中可以通过精选例题、切近现实生活,使学生逐渐深化对相关知识的理解,即讲课的内容生活化、趣味化,生活中的概率统计问题模型化。在概率统计里这些趣味性的例子比比皆是!比如摸球、投掷骰子等常见的游戏,“父母的身高对子女的影响”、“男女生人数的均衡对一个班级学习效果的影响”等发生在身边的事。在概率统计这门课程中数学模型的影子也随处可见!比如像降雨概率、人体舒适度指数、超市银台处的等待服务时间等这样的随机现象问题都需要将实际问题数量化,然后对研究对象做出判断,从而解决问题。教学内容中也可插入一些反映社会经济生活的背景与热点问题,使课堂教育跟上时代步伐。如有奖促销问题、保险赔偿金确定问题、交通事故问题等,这样的内容都旨在培养学生利用数学工具分析解决实际问题的意识和能力,也就是培养学生的建模能力。
2.教学方法中融入数学建模思想。在教学中,教师的责任更大地体现在对学生的引导能力,通过引导使学生运用自己的能力来解决相关的问题。这样使学生不但能够学到严谨的理论知识,同时也提高了学生分析问题和解决问题的能力。在教学中,我们主要采用精讲与导学相结合的方法,同时在课堂教学的各个环节中也可恰当运用讨论式、启发式、归纳类比式等教学方法。在运用各种教学方法中都要充分关注学生的参与性,在与学生的互动中挖掘出课本内容中的数学建模思想,使其“显化”出来。比如在讲解随机事件和古典概型中,可以讲解摸球问题、生日巧合及配对问题、确诊率及血清化验问题等,这样既活跃了课堂氛围,又培养了学生爱思考的习惯。必须提及的是“案例教学法”,它是概率统计课程融入数学建模思想的有效而常用的教学方法之一。在教学中可以直接给出案例,然后从求解具体问题中找出相应的理论和方法。此方法缩短了数学理论与实际应用的距离,不仅可以提高学生学习的积极性,同时也使学生明白概率统计是建立在现实生活基础上的一门课程。比如在随机变量的数字特征中,可以给出“报童的收益问题”案例;在参数估计中,可以给出“湖中鱼的数量估计”案例;在大数定律和中心极限定理中,可以给出“保险公司的收益问题”案例;等等。由于受到课时限制,可能不能充分有效地对案例进行完整讲解,通常将“案例分析法”和“现代教育技术法”相结合进行教学,利用多媒体教学手段可以将案例中出现的大量统计计算均由统计软件(如Spss,SAS,R等)来实现。这样既易于被学生接受,也有助于学生掌握统计方法和实际操作能力。
三、发挥课后作业作为课堂教学的补充与延伸作用
作为数学课程,课后作业是十分重要的组成部分,是进一步理解、消化和巩固课堂教学内容的重要环节。
1.课后试验。在概率统计这门课程中有很多随机试验,并且很多统计规律也都是在随机试验中获得的。比如通过投掷均匀的硬币和均匀的六面体骰子,可以很好地理解频率与概率之间的关系;双色球的有(无)放回抽样,有助于理解随机事件的相互独立性;统计某书上的错别字,并判断是否服从泊松分布等。通过让学生们亲自做实验,不仅使他们能够探索随机现象的统计规律性,还能帮助他们更深刻的理解、巩固和深化理论。
2.课后作业。除常规概率统计练习题目外,可以增加一些有趣的、与日常生活中密切相关的概率统计题目。比如在给出了摸彩票规则和中奖规则后,解决下面三个问题:
(1)中奖概率与摸彩票的次序有关系吗?
(2)假设发行了100万张彩票,中一、二等奖的概率是多少?
(3)若你打算摸彩票,在什么条件下中奖概率会大一些?
3.课外实践。针对概率统计实用性强的特点,有目的地组织学生参加社会实践活动,深入实际,调查研究,收集数学建模的素材。只有将某种思想方法应用到实践中去,实际解决几个问题,才能达到理解、深化、巩固和提高的效果。教师可以从现实中寻找素材,选择具有丰富现实背景的学习材料,可以让学生自由组队,深入实际,运用统计方法调查、观察和收集一些数据,在教师指导下运用所学知识和计算机技术,分析解决一些实际问题,写出书面报告。比如利用闲暇时间观察校门口某路公交车各时段乘车人数,根据观察数据,为该线路设计一个便于操作的公交车调度方案:包括发车时刻表;共需多少辆车;以怎样的程度能够照顾乘客和公交公司双方的利益。
四、改变传统单一的考核方式
考核是教学过程中不可缺少的一个教学环节,是检验学生学习情况,评估教师教学质量的手段。传统的概率论与数理统计课程均采用期末闭卷考试,教师通常都会按照固定的内容和格式出题,学生为了应付考试,往往把过多的精力花费在对公式和概念的死记硬背上,而忽略了所学知识在实际中的应用。虽然综合成绩是由平时成绩和期末成绩的各占比例计算而成,但平时成绩的考核主要看课后习题所做的作业,而学生的学习积极性对作业的态度差异性是很大的。为此,有必要改革传统单一的考核方式,培养学生综合运用知识的能力。考核结果包括两部分:一部分是闭卷考试,占60%,主要考察学生对概率统计的基本知识、基本运算和基本理论的掌握程度;另一部分是开放性考核,由各占20%的平时成绩和课后试验、课外实践构成,其中平时成绩主要考查学生的作业情况、考勤情况、课堂表现情况等方面;课后试验、课外实践主要考核学生对概率统计知识的应用能力,可以给学生一些实际问题,或者让学生参加社会实践调查收集数据,学生可以自由组队也可单独完成,通过运用概率统计知识建立数学模型并借助计算机处理大量数据对实际问题得到解决,最后提交一份书面研究报告。如此灵活多变的考核机制,才能充分调动学生学习的积极性和主动性,才有利于学生应用能力的培养。
通过在各个环节中融入数学建模思想,不但充分体现了概率统计的实用价值,搭建起概率统计知识与实际应用的桥梁,而且也使得工科类学生对概率统计这门课程的理解、认识增强了,数学的应用能力也得到了提高。
摘要:高校课程改革要求培养具有适应性和创新性的高素质人才,培养大学生的创造能力和实践能力已经引起了广泛关注。数学建模是提高学生应用意识和数学素质的重要途径之一。学校结合各学科特点及学生情况,开设数学建模课程,改变传统的数学教学方式,在各科教学中穿插数学建模思想,通过课内、课外数学教学的有机结合,培养大学生的数学建模思想,能够使学生应用数学知识解决实际问题的能力增强,有利于提高大学生的创新思维能力和综合素质。
关键词:数学建模;科技创新;实践能力
一、引言
加强大学生的创新精神和创新思维能力的培养,已是世界各国教学改革的共同趋势,也是我国实现“科教兴国”战略的基本要求。新的课程改革强调数学与实际生活的联系,多年来的教育实践证明,数学建模的教学在大学生的创新教学中的地位和意义已是举足轻重。学校可以通过数学建模,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。数学教育本质上是一种素质教育,从开始受教育,就接触数学学科,数学的重要性可见一斑,不仅仅是要掌握这门课的知识这么简单,现实生活中的很多实际问题都能用数学语言来描述,把实际问题转化为数学问题,再来描述、解决问题的过程就是建立数学模型、求解数学模型的过程。在数学教学中,就不能和现实完全脱离,这种和现实脱轨的传统教学状态使学生虽然掌握了技术,却不能学以致用,填鸭式的教育并不能使学生真正成为现在社会需要的有用人才,数学建模就是将数学和外界联系起来的一个通道。通过数学建模培养大学生对于新问题在短时间之内的解决问题的能力,有利于培养大学生的创新思想。
二、制约大学生创新能力发展的问题
目前,数学教育主要还是关注在题目上,学习的目的大部分都是为了获取高分。如果高校的教育从公式、定理展开,学生的作业、学习也依葫芦画瓢的积分微分,这种方式训练出来的学生,往往知其然而不知其所以然,虽然按教材中规中矩、按部就班地授课,可以使学生在短时间内掌握知识,也能获得暂时的效果,然而当学生走向社会时,这样学习到的知识往往不能给他们带来更多的帮助,这种情况显然不是在数学教育中理想的状态。书本上看起来或晦涩难懂或明了清楚的概念理论应该不仅仅带给学生在校时的分数、奖学金,应该了解精髓,懂得他们背后的思想和生命力才是数学带给我们远比学习成绩更重要的东西。
无论是以后从事什么岗位,接受过的数学教育锻炼过思维、逻辑,使学生在面对实际问题时更能明白事情的问题所在,更能有逻辑、更有方法的解决问题。这就是要培养学生的自主思考、发散创新的能力。传统的教学过程既然很难做到,那么就要通过别的方法训练大学生面对问题、解决问题的能力。在高校中推广数学建模是一种能实施、易实施又有效的方法。
三、高校大学生数学建模创新活动的建设内容
针对现状问题,我们以培养大学生的创新能力及实践能力为目的,通过建设高效的数学建模创新活动,激发大学生的创新活力和运用数学方法解决复杂实际问题的综合能力,拓宽学生的知识面,培养学生的创新精神和团队合作意识。
1.从全校相关专业中选拔有实战经验的教师进行培训根据不同专业的特色,从全校范围内选拔优秀的数学建模指导教师团队;根据数学建模特点,对指导教师进行专业培训和学术交流。比如,参加数学建模培训班,与其他高校优秀建模教师进行学术交流。邀请有实战经验的专家做数学建模的学术报告。根据指导教师特点进行分工,研究不同领域的数学建模问题,通过专兼结合达到知识结构的优势互补。
2.将数学建模思想融入学生的认知当中现代认知心理学家布鲁纳说:“探索是数学教学的生命线。”Moor教学法提出学习数学最好的方式是“在做数学中学习数学”。因此,在教学中调动学生积极参与数学建模过程中,探索建模方法。在选题时老师应引导学生,开发学生的开放性、探索性,开拓更广阔的探索空间。讲解建模环节,教师要善于把建模材料组织成一个体系,为学生创造探索环境。数学建模环节,教师应尊重学生的主体地位,激励学生独立思考,出错环节协助其自主分析出错原因,并从错误中寻出思维的合理之处。教师引导学生建模主要从两个方面入手:一将实际问题转化为数学问题的能力;二对转化过来的问题,应用数学解决的能力。在教学过程中,教师可以将实际问题还原成所学数学知识,使学生可以借助自己的认知结构主动构建数学模型;从数学问题原型出发,引导学生观察、分析、概括得到数学概念、公式、定理、法则的教学方式符合知识的发生发展的过程,体现教学中解决问题的心理过程。
3.在全校根据文理科专业开设数学建模通识课大一上学期,全校范围内开设数学建模通识课,结合各学科的特点,分别开设文科班和理科班,不仅理科生可以受到数学建模思想的熏陶,文科生也可以根据自身的认知体验到数学建模带来的乐趣。邀请有经验的数学建模指导教师进行讲授,要结合学生感兴趣的问题入手。
比如,20xx年高教社杯全国大学生数学建模竞赛题目B题“拍照赚钱”的任务定价,通过学生感兴趣的“拍照赚钱”等实际问题让学生切身体会到数学建模思想与生活息息相关,让学生带着问题学习。对一些同学难以理解的数学模型的讲解时,教师可以将数学问题转化为学生已有的认知当中,既通俗易懂,又能够让学生通过数学建模产生乐趣。比如,学生在学习难理解的贝叶斯模型时,先验概率对后验概率的影响,不知其意而死记硬背,教学中可以用原型引出贝叶斯模型:已知外界的环境变化影响最终决策者的判断;高等数学中的矩阵,矩阵分解可通过数学建模应用于人脸图像识别、矩阵的特征值及特征向量可以用于数据降维等。通过模型学习概念,强化数学来源于生活的思想教育,理论联系实际的数学课堂教学模式让学生看到问题的提出,有利于学生的创造性思维能力的培养,以此激发学生对数学建模的学习兴趣。学期结束时,要求学生根据教师提供的数学问题提交一份数学建模论文。
4.成立数学建模兴趣小组成立数学建模课外兴趣小组群,通过qq、微信等社交平台,充分发挥大学生的主观能动性,形成良好的学习氛围。学生通过数学建模学习如何在团队中发挥自己的长处,如何合作完成共同的任务。在数学建模课外兴趣小组中,学生互相讨论时,不同的思维碰撞会产生不同的想法,能激励大学生养成勤于动脑、善于思考的能力,能在一定程度上锻炼学生的灵活性和思考问题的多面性。课外小组中,学校举办数学建模系列讲座,可以邀请有经验的专家教师给大家讲解数学在实际中的不同应用,宣传数学建模基本思想,使学生全面理解模型的适用范围、典型特征、建模及求解过程。通过对模型深入的理解,学生了解数学建模全过程,进而举一反三。此外,根据学生的不同特点,分配给学生不同的学习任务,既激起大学生对数学建模的兴趣,又保证个性化的培养教育,学生们在小组中能体会到团队协作的重要性。学校可以开展数学文化节,依托丰富多彩的数学课外阅读活动,使学生感受数学文化,学会用数学的眼光看待世界,用数学的头脑解决身边的问题,以此提升学生的数学素养,重点培养学生的发散思维,以及以新颖独特的方式解决问题的思维方式。
5.参赛人员层级选拔及实训
(1)校内选拔。全校选拔人员采取自愿报名的方式。自愿参加的成员能积极、主动地学习,积极地思考问题,将他们的能力最大限度地发挥出来。指导教师给定几个经典题目,按照全国大学生数学建模竞赛的所有规则进行模拟竞赛,通过赛前鼓励调动学生的创造性思维能力,让学生积极参与。赛中指导教师根据每一位参赛队员的特点进行有针对性的指导,发扬每个学生的优点,提高每一位参赛队员的学业素质及水平。赛后根据每位学生在活动中的表现,评出各个学生的等级奖(一、二、三等奖及优秀奖)。根据成绩及学生在比赛中的表现,选拔出前20组优秀学生团队。
(2)优秀学生培训。学校有针对地对在校内选拔的优秀创新人才进行集中培训和实训,从实际出发,以学校培养创新性人才的目标为指导思想。在数学建模过程中,邀请往届参赛得奖的学生进行交流,介绍经验。教师带领学生观摩其他学校的数学建模培养方式,促进大学生中优秀人才的脱颖而出、健康快速成长,加强各高校之间以及高校与企业之间的研究,让大学生从中获得知识,并让学生有竞争意识。学院设立数学建模暑期培训,主要涉及有建模所需数学知识讲解、建模案例分析、建模案例练习、全国大学生优秀作品分析、最终的建模考试检测。
(3)基于理论方法和具体实战的培训。理论课方面,主要介绍数学建模基本思想、常用建模方法,以及较为经典的建模案例。在教学方法上,教师可以采用启发式教学,引领学生参与建模的全过程,使学生领悟数学建模的精髓,激发对数学建模的兴趣。实验课方面,为提高学生分析解决问题、设计实现算法的能力,介绍主要软件(Matlab、SPSS、R和Python)及其软件包,教学生直接利用软件编程求解一些简单的数学模型。实验课中,教师给出建模案例,让学生练习,包括(分析问题、提出假设、建立模型、算法设计、实验操作、结果检验、撰写论文),最后带领学生参加全国大学生数学建模竞赛。英语基础比较好的学生可以参加美国大学生数学建模竞赛。
四、结束语
创新人才的培养是时代发展的需要,是时代对教育提出的新要求。数学建模竞赛对大学生的实践创新能力十分有效,因此学校改变传统数学方式的局限性,要结合最新的科学前沿问题,通过课堂数学教学、课外活动将数学建模融入学生的认知当中,通过数学建模思想的培养,提高当代大学生的创造性思维能力,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。
参考文献:
[1]杨艳琦.基于数学建模培训大学生创新能力[J].产业与科技论坛,20xx
[2]陈六新,张伟.基于数学模型的大学生创新能力的培养[J].重庆邮电大学学报,20xx
[3]张引娣,薛宏智,王阿霞.利用数学建模提高大学生的创新能力和综合素质[J].高等建筑教育,20xx
[4]姜启源,谢金星.数学模型(第三版)[M].北京:高等教育出版社,20xx
[5]王金山,胡贵安,邱国新.将数学建模思想融入大学数学教学全面提升教学质量[J].大学数学,20xx
[6]秦立春,何友萍.高职院校数学建模培训现状及对策[J].柳州师专学报,20xx
【内容摘要】数学学科是初中教育体系中的关键课程,具有较强的逻辑思维特点,在新课改背景下对学生提出更高的学习要求,应转变数学知识的认知程度,增强自身的逻辑思维能力。不少初中数学教师为实现这一教学目标,都在积极尝试应用建模教学法,并取得不错的效果。笔者通过对新课改下初中数学建模教学的重点探究和分析,制定一系列有效的教学策略。
【关键词】新课改;初中数学;建模教学
近年来,我国教育新课改不断发展与进步,对初中数学的教学要求也不断提高,研究有效提高初中数学课堂教学的策略至关重要。初中数学教学知识具有抽象化的特点,内容较为枯燥,传统的教师讲解教学内容、学生接受知识灌输的教学模式已不能满足现下初中生学习初中数学的发展需要,必须改进与完善有效的教学策略。数学建模作为数学知识在生活实践的具体应用,在新课改下初中数学课程教学应用建模教学已是大势所趋,是改善教学质量的有效途径。为此,在初中数学建模教学中,教师将人类生产生活中的实际案例转变为数学问题,引领学生通过建立数学模型解决问题,激发他们的学习兴趣,而且在建模过程中可培养学生的实践能力和创新精神,教学效果显著提升。
一、借助数学建模降低知识难度
在初中数学建模教学中,教师需以教学对象的心理特点、认知基础和年龄特点为突破口,先从低起点的数学模型着手,并结合新课改的教学标准适当降低知识难度,让学生易于掌握,促使他们整体参与学习。所以,初中数学教师在具体的建模教学中,选择和使用的素材需贴近学生的实际生活,符合他们的认知能力和学习经验。利用这些生活现象引领学生建立数学模型,对于他们来说较为熟悉更加易于接受与掌握,从而提升教学效率。在这里以“用一次函数解决问题”教学为例,由于学生已经学习过一次函数的概念、性质、图像和特征等知识,知道一次函数的应用十分广泛。教师可结合实际生活中的案例设计题目:某市出租车收费标准:不超过2千米计费为8元,2千米后按2.5元/千米计费,求:车费y(元)与路程x(千米)之间的函数表达式?这对于初中生来说在现实生活中较为熟悉,利用所学知识结合生活案例建立数学模型,并列出函数式:y=8+2.5(x-2)(x≥2)。不过需要注意的是,在现实生活中,两个变量之间的数量关系并不完全遵循同一个标准,应根据自变量不同的取值范围,分别列出不同的函数表达式。
二、初中数学建模突出趣味教学
初中的心理特征与年龄特点决定喜欢接受趣味教学,能够亲手参与实践具有活动性质,且感性思维多于理性思维的教学模式。在初中数学建模教学中,教师需以学生喜闻乐见的方式讲授知识,从他们的兴趣爱好着手,提升课堂教学的趣味性,使其积极参与学习,促进学生建模能力的提高。而且初中数学教材中有不少有趣的现实情境素材,教师可以此为依托展开建模教学,提高学生的学习热情和兴趣,并增强他们解决问题的能力。比如,在学习“解一元一次方程”时,教师为突出建模教学的趣味性,可利用现实生活的行程问题展开教学,借助实例帮助学生学习知识,并练习和掌握一元一次方程的解法。教师可举例:甲、乙两地相距480千米,一辆公共汽车与一辆轿车分别从甲、乙两地同时出发沿公路相向而行,其中公共汽车的平均时速为40千米,轿车的平均时速为80千米,那么它们出发后多少小时在途中相遇?学生阅读完题目之后,利用学习用具进行建模,并模拟动画演示,设两车出发x小时之后相遇,根据题意列出算式:40x+80x=480,从而得出x=4。如此,不仅可让课堂教学突出趣味性,还能够培养学生的建模能力。
三、初中数学建模注重思想方法
数学建模属于一种思想方法,在新课改下初中数学课程教学中,教师不仅要帮助学生掌握数学理论知识,还应传授他们学习方法,使其掌握学习数学知识的技巧。所以,建模教学应注重思想方法的传授,让学生真正掌握建模技巧、形成建模能力。因此,初中数学教师在兼顾知识教学的同时,应注重对学生能力的培养,增强他们的建模意识和能力,在学习过程中善于使用建模思想,并运用建模解决实际问题,真正实现学以致用。例如,教师可将二次函数与矩形相关知识结合在一起,设计题目:用长度为56米的铁丝网围成一个矩形养兔场,设矩形的一个边长为x米,面积为y平方米,那么当x为何值时,y的值最大?围成养兔场的最大面积是多少?然后,教师可指导学生利用建模思想解题,根据题意矩形的一边为x米,则其邻边为(56÷2-x)米,即为(28-x)米,得出函数式y=x(28-x)=-(x-14)2+196,因-1<0,当y=196时,x=14时,所围的矩形面积最大。这道题目主要考察学生利用二次函数解决矩形面积最值的问题,教师应引领他们主动使用建模思想来分析和解决问题,培养其动手能力掌握建模技巧。
四、总结
在初中数学教学活动中引入建模教学,是培养学生学习兴趣和创造性思维能力的有效举措,教师需充分发挥建模教学的优势和作用,让学生知道建模思想的重要性,进而发展他们的思维能力、学习能力和应用能力。
摘要:不知不觉中,数学建模已经成为在学生中一个非常热门的名词随着各类数学建模大赛的如火如荼,数学建模的概念已经逐步走入到我们中学生的视线中。很多同学对于数学、对于数学建模的理解还存在着很多偏颇之处,认为数学这门学科太过深奥,比较难以学习领悟透彻,本文通过自身的理解,简要介绍了数学建模的概念与过程,体现了数学思想在问题解决过程中的指导作用,同时揭开数学建模的神秘面纱,让数学以更加平易近人的方式成为我们数学的'工具。
关键词:数学建模;过程;应用
数学是一门高度的抽象并且严密的科学这没错,但是同样的数学中的许多结论与方法,我们可以很好的应用在生活中的方方面面。数学应该是理工科学生最重要的一门基础学科,然而我们大部分的同学,甚至我自己常常都会有“不知道学了数学有什么用,学会了微分与导数日常生活也用不到”的困惑,除了备战考试,“学而无趣”、“学而无用”的现象还是非常明显的。但是伴随着现代社会的高速发展,我们所掌握的科学技术水平也在稳步提高,数学本身的发展也是日新月异。时至今日,数学在其他各个学科之中的应用已经显得尤其重要。如何通过灵活的应用所掌握的数学知识去解决各类生产生活中遇到的实际问题时,建立合理地数学模型就成为至关重要的一点。
一、数学建模的概述
人们在对一个现实对象进行观察、分析和研究的过程中经常使用模型,如科技馆里的各类机械模型、水坝模型、火箭模型等,实际上,我们常常接触到的照片、玩具、地图、电路图实验器材等都是模型。通过使用一定的模型,可以能够概括、集中以及更直观的反映现实对象的一些特征,进而可以帮助人们迅速、有效地了解并掌握所研究的对象。而随着现代计算机技术与理论的日渐成熟,以及我们研究对象逐步复杂化、抽象画,可以通过计算机模拟的数学模型应运而生。其实数学模型不过是更抽象些的模型,而数学建模就是建立这一模型的过程,并且能够将建模后计算得到的结果来解释实际问题,同时接受实际的检验。当我们需要对一个实际问题从定量的角度分析和研究时,就需要通过深入调查研究、了解对象信息,并作出作出简化假设、分析内在规律,然后用数学的符号和语言,把这一问题表述为数学式子即为数学模型。这一数学模型再经过反复的检验和修正最终得到的模型结果来解释实际问题,并且可以接受实际的检验。当今时代,数学的应用已经不仅局限在工程技术、自然科学等领域,并以空前的广度和深度向环境、人口、金融、医学、地质、交通等崭新的领域渗透,形成了所谓的数学技术,并成为现代高新技术的重要组成。这其中,建立研究对象的数学模型并计算求解成为首要的和关键的步骤。数学建模和计算机技术在知识经济时代为科学研究提供了重要的帮助。
二、数学建模的过程
数学建模的过程可粗略以上方框图表示,其具体步骤可以概述为:1)通过分析问题的实际情况,可以充分了解所面临问题的背景,去大胆分析并且暴漏出问题的本质,针对研究对象提出问题。2)忽略非主要因素,直接列出研究的对象的关键问题。将复杂问题简化,抓住关键点,大大提高问题解决的效率。3)通过应用数学公式与理论,寻找客观规律。必要时可以借助计算机软件,形成合适的数学模型。4)通过运作已建立的数学模型,产生结果,进而通过结果的对比判断所建立的数学模型是否真正符合实际的客观规律。这是一个动态的检验、修改的过程,通常需要多次的模拟和完善才能够建立起合理有效的数学模型。5)将建成的数学模型规律转化为解决实际生活中的各种问题的方法,进而可以直接或间接地提高生产、生活效率。数学建模其实就是连接数学理论知识和数学实际应用两者之间的一条纽带。总有一些同学将数学建模看得多么的高深莫测,其实我们在以前的日常的学习中早就已经接触过了数学建模。现在经常被我们当成搞笑段子来讲的一些小学学习数学的阶段做过的很多应用题,实际就是一种简单的数学建模。数学建模的确切的含义目前尚无定论,但比较莫忠一是的看法为:通过将实际问题的抽象化,归纳并简化问题,进而确定变量跟参数,运用数学的理论和方法,逐步确立比较合理的数学模型;然后再应用数学与其他相关学科中的理论和方法借助计算机等相关技术手段,建立起数学模型;接着我们会对此模型进行反复地验证,分析讨论,不断地对其进行修正,逐渐地改进使它更加的规范化。简单来说,数学建模就是以现实作为背景,用数学科学理论作依托,解决实际生产生活中问题的过程。因而,可以说我们所熟知的任何一个数学上的概念、定理、命题或者结构,都可以看作是数学模型。
三、数学建模的应用与总结
进入计算机技术引领的20世纪,随着电子计算机的出现与飞速发展,数学以前所未有的广度和深度向各个领域渗透,而数学建模正是这其中的纽带。在统工程技术领域诸如机械、电机、土木、水利等方面,数学建模已展现了其重要作用。建立在数学模型和计算机模拟基础上的新型技术,已经凭借其快速、经济、方便的优势,大量地替代了传统工程设计中的现场实验和物理模拟等手段。高科技时代下的技术本质上已经成为一种数学技术,源于支撑现代科技的计算机软件是数学建模、数值计算和计算机图形学相结合的产物在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。
大学数学包含微积分、线性代数、概率论与数理统计三门基础课程,这是高校经管类专业必修课程;更高级的数学课程还有运筹学、最优化理论,这些在中高级西方经济学中会经常用到。现实经济中存在很多问题都与数学紧密相关,都需要严谨的数学方法去解决,因此数学的学习是非常重要的。数学的学习,一方面能够培养学生的逻辑思维能力和空间想象能力,另一方面,数学的系统学习为经管专业后续课程(如西方经济学、计量经济学)提供了数学分析工具和计算方法。除了需要掌握数学分析和计算能力,经管专业应该更加注重培养学生的经济直觉和数学建模能力,让学生形象地理解数学定义和经济现象。虽然现在高校中经管类专业的数学教育过程融合了一些本专业的知识,但仍存在很多问题。笔者根据自己以及同行的教学经验,提出相应的改革措施以更好挖掘数学方法在经管中的有效作用。
一、经管类专业大学数学的特点
每个专业都有其独特的学习内容和方法。经管专业作为我国培养经济工作人员的特殊专业而成为国家重视、社会关注的专业。大学数学是社会科学和自然科学的基础,因此其在经济学理论中有着举足轻重的地位,数学可以为经济学中的很多问题提供思想和方法的支持。经管类专业数学的学习有如下特点。
1.经管专业的数学和经济学问题紧密相关。
经管专业要学习和解决经济相关内容,因此,经济类的数学教育要围绕着经济问题展开讨论,例如简单的经济问题有价格函数、需求函数、供给函数以及边际成本的分析,复杂一些的还有竞争性市场分析、垄断竞争和寡头垄断、博弈论和竞争策略、生产和交换的帕累托最优条件、信息不对称的市场,这些都需要用微积分的知识理解。把数学知识融入经济学,能够给解决经济学问题提供有效的技术支持。例如通过画出各种函数的图像,可以让学生更直观地了解价格、需求、供给的关系,可以更形象地看出它们之间的依赖关系。微积分中导数的学习应用到经济中为经济利益最大化提供了分析方法,例如需求理论可以转化成一个约束最优化问题,用拉格朗日乘数法进行求导计算,从而求出目标函数的最优值。另外,消费者剩余可以转化成定积分进行计算,人口阻滞增长模型可以用微分方程解释。
2.经管专业的数学学习注重经济直觉培养。
数学的学习可以训练和培养学生的逻辑思维能力,一般自然科学专业的数学学习注重于各种问题的来源以及证明。然而经管专业的数学主要为学生培养经济直觉并引导其进行有效计算,因此需要着重培养经管专业学生的数学计算能力。例如,在讲最值问题时可以让学生计算利润最大化的例子,利用微积分的知识计算出最大利润,这样既培养了学生的数学计算能力,又让学生理解了经济学概念。
二、经管类专业学习数学的过程中出现的问题
近年来,大学数学教育改革取得了一定效果,但是还存在很多问题。例如,有些学校不重视大学数学课程的学习,只注重专业课的学习。实际上数学学习的效果直接影响后续专业课的学习。还有部分院校教师教授经管课程时还停留在纯粹的数学理论上,虽然有的高校在高等数学教育中很大程度上融入了经济中的各类问题,但是由于高校教师都是数学专业出身,对经济类专业中的数学问题不甚了解,因此不能很好地解释相应的经济现象。另外,经管类招生一般同时招收了文科和理科生,从而学生的数学基础大相径庭,使得大学数学的教学存在一定困难。还有大学的学习任务重而老师授课时间有限,对于基础较差的学生,教师又不能非常详细地复习学生高中学过的知识,因而造成基础好的学生学起来轻松自如,学习效果较好,而基础差的学生学起来吃力,学习的效果也不尽如人意。
三、改革措施
培养学生经济直觉和数学建模能力
1.优化教学内容,根据专业特点选取相关实例来理解数学定义。
由于大学课程任务重,使得大学数学的学习课时相对变少,这就要求教师上课时要优化教学内容,适当删减纯数学理论的学习,在不影响后续课程的条件下,可以删除一些难度较大的纯理论性的内容,扩充一些和经管专业知识相关的内容。教师在上课时,要根据学生所学专业的特点,选取相关概念、相关实例,让学生更直观、更形象地学习数学知识,从而培养学生的经济直觉。例如,在学习微积分中导数的相关概念时,可选取有关成本函数、收入函数和利润函数的例题来求边际成本、边际收入和边际利润,从而让学生了解导数在本专业中的应用。在讲线性代数的矩阵概念时,可以给学生讲解经济学中投入产出模型。在讲股票投资的时候可以和概率论联系在一起,通过概率论的理论解释可以说明股票投资是具有随机性的,在股票市场没有绝对的赢家。在讲拉格朗日方法的时候可以引入影子价格的概念,从而理解影子价格的经济现象解释。只有让数学和学生所学专业挂钩,才能让学生轻松地学习数学定义,并了解一些经济学专业名词,达到让数学更好的为专业知识服务的目的。
2. 教学过程中要注重学生数学建模思想的培养。
经管类专业学生学习数学课程,一方面是为了解决专业内容中的问题,另一方面是还需要培养学生的逻辑思维能力和分析问题、解决问题的能力。因此,在讲授经济中的数学问题时,还要教会学生根据经济问题建立相应的数学模型。建模就是把经济学中一些现象或者问题用数学语言表述出来,然后进行模型求解,从而解释经济现象或者解决相应的经济问题。通过建立数学模型把经管专业中的经济学问题转化成数学问题,然后通过求解数学模型得出相应答案,从而解决该经济问题。因此,建立数学模型非常重要。例如求解最大利润问题、最小成本问题可以引导学生通过建立利润和成本函数,从而转化成一个最优化问题,并且在求解该问题时,需要用到导数(偏导数)的知识,这样既加深了学生对数学知识的理解,又体会到数学知识在经济学中的重要作用。在学习统计学的F检验和T检验时,可以引导学生建立计量经济学中要学习的回归模型,一开始可以引入一元线性回归模型,再过渡到二元线性回归模型,对于二元线性回归模型可以形象地借助二维图像进行说明,最后分析多元线性回归模型,特别地,还可以指出,在回归模型的建立中本质上用到了微积分中学习的最小二乘法。在线性回归模型学习完以后,还要进一步学习更加复杂的非线性模型,以便让学生掌握由简单到复杂的数学建模过程。总之,在整个数学的学习过程中,要经常让学习练习如何正确地建立模型,以提高学生分析问题和解决问题的能力。
3.教师要不断了解经管专业知识,以适应学生学习的需要。
教授经管类专业的任课教师要不断阅读经管类专业相关书籍,充分了解经管类专业知识要用到的数学知识和数学思想,把经济学和数学融会贯通。只有这样,教师在上课时才能做到有的放矢,才能时刻围绕学生所学所需的专业知识来讲授数学知识,真正做到数学为专业服务。整个教学过程中,教师要对经管类专业知识有深入的理解,才能结合数学给学生解释清楚经济学概念和经济学原理,才不至于让所学内容与专业知识脱轨。教师要了解经济学的前沿进展,从而可以在上课过程中引入生动而形象的经济实例,做到学教结合,真正成为学生学习的引路人。
4.教学方法要多元化,以提高学生学习兴趣。
目前,经济数学的教学依然是传统的教学模式,即教师讲授、学生被动接受的模式。这种教学方法严重挫伤了学生学习的积极性和主动性。因此,教学方法的选择至关重要。这就要求教师要根据学生的特点,做到因材施教。讲课过程中也不能一味罗列一些数学定义和数学定理,而要注重与学生的互动,以提高学生学习的积极性。教师在上课过程中还要注重学生兴趣的培养,可以讲一些获得诺贝尔奖的经济学家的事迹,很多获得诺贝尔奖的经济学家都有很好的数学基础,在这些基础上他们进一步在学习的过程中加强了自己的经济直觉培养,最后取得学术的成功。通过经济学家的故事可以启发引导学生去接触最新的经济学理念,从而逐步探索新知识,然后启发学生学习数学和经济学的兴趣。同时要让学生多独立思考,布置一些有趣的课后习题,特别是可布置一些结合生活中的经济实例的数学习题,通过解答这些习题,学生不但可以学习数学知识,还可以让学生体会数学和经济学的生动结合,最后引导学生思考一些更加复杂的经济问题并用数学知识解决问题。只有老师生动讲解、引导和学生快乐、轻松学习的完美结合,才能激发学生的学习兴趣,起到事半功倍的学习效果。
四、结语
在高校数学教学中,应根据经管专业特点采取有效的教学方法教授数学知识,特别要注意学生经济直觉的培养,这就要求在教学过程中可以适当减少数学的严格证明,注重数学概念在经济学中的应用,从而让学生形象生动的理解数学知识在经济学中的重要作用。另外,教学过程中还需要培养学生的数学建模能力,并培养学生学习数学的兴趣,引导学生将所学数学知识应用到实际工作中,真正做到学有所用,从而培养优秀的经济类人才。
【摘 要】为了提高空气管理系统控制功能的设计与确认效率,研究了信号驱动的空气管理系统控制逻辑建模方法。结合空气管理系统控制特点,采用自底向上建模的思想,先构建底层系统信号库,再由信号逐层搭建控制逻辑,最后由控制逻辑驱动功能并在功能层进行逻辑确认。本文方法在空气管理系统CAS与简图页逻辑设计与确认过程中进行了应用验证。
【论文关键词】空气管理系统;信号驱动;控制逻辑建模
0 引言
空气管理系统是民用飞机上非常重要的机载系统之一,负责控制飞机引气、座舱压力调节、机翼防冰、温度控制等功能[1-5]。空气管理系统控制是以两个综合空气管理系统控制器(IASC)为控制中枢,以各种传感器发来的监控信号、外部系统发来的通讯信号为输入,经IASC内部逻辑运算后,驱动各种受控设备,如风扇、活门、加热器等,来实现飞机空气温度、压力、流量等控制功能,并将系统状态信息发送给外部系统实现显示、告警及记录功能。
空气管理系统控制功能需求是以系统需求为依据,结合所采用的控制架构细化而来。各控制功能由若干个控制逻辑组成。在空气管理系统研制过程中需要进行控制功能的确认与验证。仿真的方式能有效提高效率,降低成本,而建立各种控制逻辑模型则是进行仿真确认与验证的基础。本文研究了一种信号驱动的空气管理系统控制逻辑建模方法。
1 信号驱动的控制逻辑建模方法
信号驱动是指由各种信号作为基本单元来进行控制逻辑建模。各个信号表示着不同的状态变量,空气管理系统控制器根据不同的输入状态变量的值来决定发出的指令信号。通过基本信号来表述逻辑能从最底层关系开始,逐步向上搭建整套控制逻辑。具体的建模过程包括构建信号库、搭建逻辑树以及驱动功能验证逻辑3个步骤。
1.1 构建信号库
构建信号库是为了方便在构建逻辑时随时调用而将一些基本的输入信号信息收集并按照一定的编码方式存储起来。空气管理系统逻辑运算中需要用到的信号属性包括信号名称、信号功能范围、信号有效性、信号设备源。所以可将每条信号按照[ID|NAME,RANGE(MIN,MAX),VALID,SOURCE]的方式进行整理,例如由控制器IASC1的A通道发出的座舱高度告警信号可表示为[00001|CAB_ALT_W,(0,1),true,IASC1A]。集合所有控制器接收的信号,从而形成空气管理系统信号库。
1.2 搭建逻辑树
逻辑树的根节点一般是各个基本信号组成的关系式,例如CAB_ ALT_W=1,表示座舱告警为真。这些关系式通过基本的与/或逻辑算子连接,从而形成基本的逻辑树,这些逻辑树的输出结果为TURE或者FALSE。在搭建逻辑树的过程中,当一条逻辑链比较长时,可将一棵逻辑树的输出作为另外一棵逻辑树的输入而形成逻辑嵌套,建模论文这种方式能简化逻辑树的搭建过程。逻辑树的表达可用逻辑方程来记录。例如座舱高度告警逻辑可按以下两种方式表达。
将所有的逻辑按照逻辑树的方式搭建起来,可形成一个逻辑库,在后续定义功能时即可直接调用来构建功能。
1.3 驱动功能验证逻辑
若干条逻辑合在一起,可以驱动复杂的功能。通过功能的仿真即可验证各种逻辑的正确性。从功能层面进行验证因为意义更明确更方便实施,且一条功能的验证即可验证多条逻辑,功能验证的方式是选择功能相关的所有信号,设定各信号的状态值,作为组成功能的所有逻辑的输入,计算得到功能输出值,观察是否与预期一致。
2 空气管理系统CAS与简图页逻辑建模与验证
CAS与简图页是供飞行员了解各系统状态的重要页面,由系统负责提供信号,指示系统按照指定的CAS与简图页逻辑进行显示。基于本文的思想,进行空气管理系统CAS与简图页逻辑建模与功能验证,开发了相应的软件平台。
2.1 空气管理系统CAS逻辑建模
定义CAS主要需要定义CAS等级、CAS显示内容以及CAS显示逻辑。CAS等级按照严重程度可分为WARING,CAUTION,ADVISORY, STATUS四种,分别用红色、黄色、青色、白色来表示。本文定义的CAS逻辑是由系统发出CAS相关信号后,由这些信号运算后显示在CAS页面的逻辑,空气管理系统CAS消息主要显示系统工作状态以及在一些危险状态如座舱高度过高、机翼防冰失效等情况下告警。
CAS定义模块主要提供CAS名称、内容、等级的编辑页面,CAS逻辑的指定可直接调用逻辑库中的逻辑。
2.2 空气管理系统简图页逻辑建模
空气管理系统简图页功能是通过简要示意图显示系统主要设备与管路内空气的状态,管路的空气状态信息需要根据上下游的设备状态来判断,这些判断关系组成了简图页的逻辑。空气管理系统简图页的主要图形元素是活门与管路流线,其逻辑定义可分为活门与流线显示逻辑定义。简图页定义模块设计了自定义活门与管路绘制工具,通过活门与流线显示逻辑定义指定显示颜色的驱动逻辑,构成整体的简图页显示逻辑。
2.3 空气管理系统CAS与简图页功能验证
前面构建了空气管理系统CAS与简图页的逻辑,通过指定各功能相关输入信号的值,在逻辑运算后再直观地显示在页面上,从而可以确认功能是否正确实现。在验证时只需根据场景需要,设定各信号的模拟值,由系统后台运算得到功能输出信号值,并驱动页面上的显示元素显示相应的状态。
通过上述几个步骤,能对空气管理系统CAS与简图页功能进行整体的验证,有效提高了CAS与简图页功能的设计与确认效率,也能为后续系统排故提供支持。
3 结论
本文结合空气管理系统控制架构特点,提出了信号驱动的逻辑建模方法。本文方法具有如下特点:
1)构建了空气管理系统基础信号库,能支持在逻辑层、功能层随时调用相关的信号信息;
2)构建了空气管理系统逻辑库,支持上层功能的搭建与验证;
3)开发了控制逻辑建模工具,能模拟各种场景下的功能验证,提高了设计效率。
【参考文献】
[1]程立嘉,程晓忠,左彦声.大型客机空气管理系统现状与发展趋势[J].航空科学技术,20xx.3:7-8.
[2]徐红专,崔文君,张惠娟.电子电动式座舱压力调节系统研究[J].江苏航空,20xx,3:8-13.
[3]李明江.飞机自动增压系统仿真实验的设计与实现[J].实验室科学,20xx,13(4):73-75.
摘要:以文献综述法为主要策略,查阅知网和万方数据库中有关高职数学建模教学的相关文献,对高职数学建模教学现状,存在问题以及优化发展对策的文献研究成果进行梳理,通过研究综述发现:以建模思维构建课堂情境已成为国内众多高职院校数学课程教学的重要方法,对数学教学效果的提升也起到了积极的作用,但在教学方法创新和学生有效引导等方面仍存在一些问题,希望各级高职院校能够针对凸显出的问题进行有效整改。
关键词:高职数学;建模教学;现状与发展;综述分析
一、数学建模教学理论概述
(一)数学模型
数学模型是一种使用数学语言对现实问题的抽象化表达形式。它是人们用数学方法解决现实问题的工具,基于数学模型的现实问题表达往往有着量化的表现形式,再通过数学方法的推演和求解,将现实问题中蕴含的数学含义表达出来。在数学、经济、物理等研究领域,有很多经典的数学模型,例如:,马尔萨斯人口增长理论模型、马尔维次投资组合选择模型等,这些数学模型的构建帮助人们解决了很多现实的问题,提升了相关领域量化分析的精确度。
(二)数学建模教学的步骤
数学建模教学是一种基于数学模型的教学方法,在高职院校数学教学中被普遍应用,具体来说数学建模教学的一般步骤为:
(1)模型理论依据分析。在教学中倘若需要以某一个知识点为基础建设数学模型时,教师应该以前人的研究成果为依据,找寻模型建设的理论支撑点,切忌假大空似的模型构建思路。
(2)以教学内容为基础假设模型。根据教学内容的需要,对待研究问题进行模型化假设,提出因变量、自变量等模型语言。
(3)建立模型。在假设的基础上建立模型。
(4)解析模型。将待求解的数学数据代入模型进行解析计算。
(5)模型应用效果检验。将模型解析的结果与实际情况进行比较,以检验模型解析的准确性和实效性。
二、高职数学建模教学现状与问题研究综述
(一)教学现状综述
施宁清等人(20xx)采用试验法研究了建模教学在高职数学课程教学中的效果,试验的过程以对照班和实验班对比教学的形式展开,针对试验班的教学采用数学建模的方法,而对照班的教学则采用传统的讲授法展开,通过一段时间的教学实践后设置评估变量对两个班级学生的数学学习效果进行了总结,结果显示:试验班学生的数学考试成绩、建模应用能力等均优于对照班,说明建模法对高职数学教学质量的提升效益明显。危子青等人(20xx)项目教学法与建模思想融合的高职数学教学形式,指出:该种教学的特色在于将高职数学课程的教学内容划分为若干个子項目,对每一个项目都进行模型化构建,并以模型为素材设计和组织项目化教学,通过教学应用后发现学生不仅掌握了项目教学的学习精髓,也掌握了数学模型的构建解析技能,教学效益获得了双丰收。冯宁(20xx)肯定了建模思想对高职数学教学带来的效益,指出:通过引入建模教学,能够最大化锻炼学生的发散性思维,以及数学逻辑应用能力,对教学效果的促进效益明显。
(二)存在问题综述
尽管建模法对高职数学教学带来的效益十分明显,但在多年的教学实践中一些问题也不断凸显出来有待进一步整改,为此国内一些学者也将研究的视角放在建模法在高职数学教学中存在问题的研究上,例如:孟玲(20xx)从教学方法的教学分析了高职数学建模教学中的问题,指出:很多高职生对数学学习的兴趣不足,加之传统的数学模型又十分抽象,学生理解起来比较困难,一些高职数学教师采用传统的建模教学思路组织教学并不利于学生学习兴趣的激发,而抽象的数学模型与陈旧的教学方法结合反而降低的教学的效果。曹晓军(20xx)则认为:很多数学教师并不注重引导学生科学地理解数学模型,并在此基础上有效地接受学习内容,而是一味地采用灌输法设计教学过程,不利于数学模型在课程教学中的应用效益提升。
三、高职数学建模教学发展对策综述
针对建模法在高职数学教学中凸显出的问题,一些学者也提出了对策。例如,齐松茹(20xx)认为应创新建模教学的形式和方法,如引入游戏教学法,将深奥的数学模型趣味化,通过组织多元化的教学游戏激发起学生参与建模学习的兴趣。谷志元(20xx)则认为教师应该加大对学生的引导,通过课前、中、后期的有效引导,帮助学生有效地建立起对数学模型的认知,逐步教会学生利用模型解决实际问题,达到学以致用的教学效果,以提升数学模型在课程教学中的价值。周玮(20xx)则提出了结合网络课堂建立研讨式课堂的建模教学新思路,不失为一种高职数学建模教学的创新教法。
四、结语
通过对已有文献的查阅和梳理发现,高职数学课程教学中引入建模方法对于课程教学实效性提升的效果已经得到了国内众多学者的肯定,但在应用中也存在一些问题,比如:教学方法的创新度不够,学生引导的活动不多等,为此国内一些学者也提出了针对性的教学优化思路。本文的研究认为:建模法对于高职数学教学效益的提升有着积极的价值,在今后的教学实践中各级高职院校教师应该结合教学的实际情况开展科学的建模教学活动,以不断提升高职数学建模教学的实效性。
参考文献:
[1]施宁清,李荣秋,颜筱红.将数学建模的思想和方法融入高职数学的试验与研究[J].教育与职业,20xx,(09):116-118.
[2]危子青,王清玲.项目教学法与高职数学建模教学的改革[J].职教论坛,20xx,(35):76-78.
[3]孟玲.高职数学建模教学的策略与方法刍议[J].教育与职业,20xx,(17):106-107.
[4]冯宁.基于数学建模实践活动的高职数学课程教学[J].教育与职业,20xx,(17):127-129.
[5]曹晓军,李健.高职数学教学中渗透数学建模思想的必要性[J].吉首大学学报(社会科学版),20xx,37(S1):200-201.
[6]齐松茹,郑红.引入数学建模内容促进高职数学教学改革[J].中国高教研究,20xx,(12):86-87.
[7]谷志元.数学建模促进高职数学课程改革新探[J].中国职业技术教育,20xx,(29):11-13+20.
[8]周玮.基于数学建模的高职数学创新性课堂研究[J].中国成人教育,20xx,(12):135-137.
数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。
一、数学建模的含义
数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。
二、数学建模能力的培养与强化
1.精心设计导学案,引导学生通过自主探究进行建模
在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。
2.在教学环节中融入数学模型教学
教师在教学的各个环节都可以融入数学模型教学。例如,教师在新课教学时,应注意渗透数学建模思想,让学生将新授课中的数学知识点与实际生活相联系,将实际生活中与数学相关的案例引入课堂教学,引导学生将案例内化为数学应用模型,以此激发学生对数学学习的兴趣。在不同教学环节,教师通过联系现实生活中熟悉的事例,将教材上的内容生动地展示给学生,从而强化学生运用数学模型解决实际问题的能力。
教师通过描述数学问题产生的背景,以问题背景为导向,开展新授课的学习。教师在复习课教学环节,注重提炼和总结解题模型,培养学生的转换能力,让学生多方位认识和运用数学模型。相对而言,高中阶段的数学问题更加注重知识的综合考查,对思维的灵活性要求较高。高中阶段考查的数学知识、解题方法以及数学思想基本不变,设置的题目形式相对稳定。因此,教师应适当引导,合理启发,对答题思路进行分析,逐步系统地构建重点题型的解题模型。
3.结合教学实验,开展数学建模活动
教师在开展数学建模活动时,应结合教学实验。开展活动课和实践课,可以促使学生进行合作学习。教师要适时进行数学实验教学,可以每周布置一个教学实验课例,让学生主动地从数学建模的角度解决问题。在教学实验中,以小组合作的形式,让学生写出实验报告。教师让学生在课堂上进行小组交流,并对各组的交流进行总结。教学实验可以促使学生在探索中增强数学建模意识,提升数学核心素养。
4.在数学建模教学中,注重相关学科的联系
教师在数学建模教学中,应注重选用数学与化学、物理、生物等科目相结合的跨学科问题进行教学。教师可以从这些科目中选择相关的应用题,引导学生通过数学建模,应用数学工具,解决其他学科的难题。例如,有些学生以为学好生物是与数学没有关系的,因为高中生物学科是以描述性的语言为主的。这些学生缺乏理科思维,尚未树立理科意识。例如,学生可以用数学上的概率的相加和相乘原理来解决生物上的一些遗传病概率的计算问题,也可以用数学上的排列与组合分析生物上的减数分裂过程和配子的基因组成问题。又如,在学习正弦函数时,教师可以引导学生运用模型函数,写出在物理学科中学到的交流图像的数学表达式。这就需要教师在课堂教学中引导学生进行数学建模。因此,教师在数学建模教学中,应注意与其他学科的联系。通过数学建模,帮助学生理解其他学科知识,强化学生的学习能力。注重数学与其他学科的联系,是培养学生建模意识的重要途径。
总之,教师在数学教学过程中,应以学生为本,精心设计导学案,鼓励学生自主探究和应用数学模型。通过建模教学,让学生形成数学问题和实际问题相互转化的数学应用意识和建模意识。教师通过强化数学建模意识,让学生掌握数学模型应用的方法,可以使学生奠定坚实的数学基础,提升数学核心素养。
参考文献:
[1]郑兰,肖文平.基于问题驱动的数学建模教学理念的探索与时间[J].武汉船舶职業技术学院学报,20xx(4).
[2]王国君.高中数学建模教学[J].教育科学(引文版),20xx(8).
[3]李明振,齐建华.中学数学教师数学建模能力的培养[J].河南教育学院学报(自然科学版),20xx(2).
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用
1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用
2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。
2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。
3.数学建模对大学数学及其他学科教师的作用
数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。
随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。
参考文献:
[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.
[2]于骏.现代数学思想方法.山东:石油大学出版社,.
一、在高职高专高等数学教学中融入数学建模的基本思路
在高职高专高等数学教学中融入数学建模,首先在概念讲授中要融入数学建模思想。数学概念是高等数学学习的基础,同时也是高等数学的灵魂,能不能理解数学基本概念是能否学好数学的关键。在讲解概念的过程中要让学生了解这些概念的来龙去脉,让学生充分了解数学概念产生、发展、应用的全部过程,要让学生明白为什么要学高等数学,带着问题主动去学习,注重讲清高等数学概念是怎样形成的,再结合学生所学专业背景,将这些概念与现实生活中的问题联系起来。例如在学习导数概念这一节时,可以将概念的讲解和现实生活中实际现象相结合,如:二氧化碳的排放造成的全球变暖、猪肉价格的涨跌、自由下落物体运动等,让学生思考平均变化率和瞬时变化率的问题,然后讲解两个经典的数学模型:物体的瞬时速度和曲线的切线斜率,进而提出导数的概念,通过与现实问题结合讲授概念,能让学生更好地理解并应用导数概念。
其次,在高职高专高等数学教学中,将数学建模案例与定理讲解相结合。例如,在介绍条件极值的时候,可以与“奶制品的生产与销售”这个建模例子结合起来讲解,通过教师的引导,将条件极值和这个问题联系起来,找到它们之间的关系,用数学建模的思想解决这个实际问题。在讲解极值定理时,可以增加简单的优化模型,例如与“存贮模型”“生猪出售时机”“最优价格”等数学模型相结合。通过这些实际问题的模型,学生能更好理解高等数学中定理,并学会应用定理解决实际问题。再次,在高等数学习题课教学中可以增加建模案例教学的环节,数学建模案例的难易程度应与高职高专学生的知识水平和学习能力相符,过于简单或过于困难都不利培养学生的学习兴趣,要选取难易适当、与现实生活相关的实际问题,例如,在微分中值定理及导数应用这一章习题课中可以增加“消费者选择”数学模型;在积分知识及其应用这一章习题课中可以增加“存储问题”数学模型,在微分方程这一章的习题课中,可以增加“经济增长模型”和“香烟过滤嘴的作用”,等等。通过对这些与现实相关的问题的研究,学生能清楚地认识到高等数学在实际问题中的应用,从而积极主动地应用数学知识分析问题、解决问题。最后,可以在高等数学课程的考核中增加数学建模问题。
学完每章节的内容后,在课外作业的布置中,除书本中的习题外可以再增加一两道需要运用本章知识解决的实际问题的数学建模题目,这些数学建模可以让学生独立或自由组合成小组去完成,给予完成情况好的学生较高的平时分,在期末考试试题中以附加题的形式增加数学建模的题目。用这种方法,鼓励学生应用数学的知识解决现实中各种问题,提高学生使用数学知识解题的能力,调动学生的学习积极性,从而使学生获得除数学知识本身以外的素质与创新能力。
二、在高职高专教学中融入数学建模,教师要具备创造性思维和创新精神
在高职高专高等数学教学中融入数学建模的思想,要培养教师具有较高的创造型思维修养和较强的创新精神。创造性思维和创新精神内涵丰富,要有刻苦钻研、敢于探索的精神,脚踏实地、勤奋、求真务实的态度,锲而不舍、坚韧不拔的意志,不畏艰难、艰苦奋斗的心理准备,良好的心态、强烈的自我控制和团队协作意识等多方面的品质。教师是高职高专人才培养质量的重要因素,高职高专院校要培养学生的思考能力和探索精神,教师必须具备较高创造性思维修养和创新精神,如果高职高专的教师队伍不具备创造性和创新性,培养出的学生就不可能具备探索精神和创新品质。实践证明,高职高专数学建模教学的顺利开展,可以让教师在教学中增加实际问题模型,让教师在教学过程中与学生形成互动,引导学生应用所学数学知识解决实际问题模型,培养学生自主创新思考能力,打破传统的“填鸭式”、“满堂灌”等教学方式,让学生由被动学习转变为主动学习,达到良好的教学效果。
1素质教育与高职数学课程改革
在职业教育大发展的初期,在“工具论”和功利主义教育思潮影响之下,一度把为专业课服务作为数学课的唯一职能,甚至普遍弱化数学课的地位,一些学校的数学课程被大幅缩减甚至被取消。部分专家学者及时对唯技能、唯工具、忽视素质教育等错误思潮进行了批判,20xx年8月,教育部颁布文件《教育部关于推进高等职业教育改革创新,引领职业教育科学发展的若干意见》,强调改革培养模式,增强学生可持续发展能力,重视学生全面发展,推进素质教育,增强学生自信心,满足学生成长需要,促进学生人人成才。公共基础课是高职院校素质教育的主渠道,为素质教育服务是高职院校基础课改革的方向。高职院校基础课的功能主要有为专业课服务和为素质教育服务两个方面。如果真正明确高素质技能型人才的培养目标,真正重视学生的终身发展,而不是把高职院校视为技能培训机构,就应该高度重视基础课的地位。数学的基础性与广泛的应用性不仅使数学成为学习其他科学的基础和工具,而且也使数学成为提高高职学生全面素质极好的载体。高等数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一门科学,而且是一种文化。它内容丰富,理论严谨,应用广泛,影响深远。然而,当前多数高职院校数学课堂仍是以传授课本上的理论知识为主,课程内容主要局限于数学的知识成分,很少涉及到数学思想、精神、学生情感、态度、价值观等观念成分,很少涉及到解决实际问题的能力,而较多地让学生做习题,却较少地让学生想问题。在做习题中,又较多地在操作层面上训练解题方法,而较少地在思维层面上培养数学素养,重知识,轻思想;重技巧,轻能力。大多数学生对数学的思想、精神了解得较肤浅,甚至误以为学数学就是为了会做题、能应付考试,不知道数学方式的理性思维的重大价值,不了解数学在生产、生活实践中的重要作用,不理解数学文化与诸多文化的交汇。所选用的教材由于过多考虑数学学科的知识本位,学生通过教材看到的是定义、公式、定理和性质的堆积和罗列,看不到实际应用的案例,因此学习积极性不高,学习效果不好。况且高职学生基础相对较差,教学效果更不如人意。
2数学建模融入数学课程是高职数学课改的有效切入点
近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。
2.1数学建模融入数学课程能够培养和提高学生的学习兴趣
学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。
2.2数学建模思想融入数学课程能够加快高职学校素质教育的步伐
高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。
2.3数学建模思想融入数学课程能够提升学生各方面的能力
学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。
3数学建模教学实践及学生创新能力的提高
近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。
3.1融入数学建模思想精心设计教学内容
按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的`思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析→基本知识讲解→触类旁通→举一反三,归纳总结→掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。
3.2灵活多样的教学方法与现代教学手段相结合
在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。
★
★
★
★
★
★
★
★
★
★