数学教案-第四章 一元一次方程 利用等式的性质解方程

下面是小编为大家整理的数学教案-第四章 一元一次方程 利用等式的性质解方程,本文共8篇,仅供大家参考借鉴,希望大家喜欢,并能积极分享!

数学教案-第四章 一元一次方程 利用等式的性质解方程

数学教案-第四章 一元一次方程 利用等式的性质解方程

一、目的要求使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程               7x-2=6x-4

时,用移项可直接得到  7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;       (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程()

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到                     x=5+7,

x=12。

又如方程                           7x=6x-4

的.两边都减去6x,就可以得到      7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

利用移项解前面提到的方程   3x-2=2x+l

解:移项,得              3x-2x=1+2。①

合并,得                      x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

所以x=3是原方程的解。

在上面解的过程中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页  练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2.1  P73 复习巩固

数学教案-第四章 一元一次方程 利用等式的性质解方程

一、目的要求     使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程               7x-2=6x-4

时,用移项可直接得到  7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;       (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的`解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到                     x=5+7,

x=12。

又如方程                           7x=6x-4

的两边都减去6x,就可以得到      7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

第四章 一元一次方程 利用等式的性质解方程 ―― 初中数学第一册教案

第四章 一元一次方程 利用等式的性质解方程

一、目的要求使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程               7x-2=6x-4

时,用移项可直接得到  7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;       (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到                     x=5+7,

x=12。

又如方程                           7x=6x-4

的`两边都减去6x,就可以得到      7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

利用移项解前面提到的方程   3x-2=2x+l

解:移项,得              3x-2x=1+2。①

合并,得                      x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

所以x=3是原方程的解。

在上面解的过程中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页  练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2.1  P73 复习巩固

一、目的要求     使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程               7x-2=6x-4

时,用移项可直接得到  7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x;       (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的.正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到                     x=5+7,

x=12。

又如方程                           7x=6x-4

的两边都减去6x,就可以得到      7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程   3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

利用移项解前面提到的方程   3x-2=2x+l

解:移项,得              3x-2x=1+2。①

合并,得                      x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

所以x=3是原方程的解。

在上面解的过程中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页  练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2.1  P73 复习巩固

初中数学一元一次方程利用等式的性质解方程教案设计

一、目的要求

使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的'不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程 7x-2=6x-4

时,用移项可直接得到 7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x; (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程当中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到 x=5+7,

x=12。

又如方程 7x=6x-4

的两边都减去6x,就可以得到 7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程。

利用移项解前面提到的方程 3x-2=2x+l

解:移项,得 3x-2x=1+2。①

合并,得 x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

所以x=3是原方程的解。

在上面解的过程当中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页 练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2。1 P73 复习巩固

教学内容:

教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

教学目标要求:

1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

教学重点:

理解“等式的两边同时加上或减去同一个数,所得结果仍然是等式”。

教学难点:

会用等式的这一性质解简单的方程。

教学过程:

一、教学例3

1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的'知识。请同学们看这里的天平图,你能根据图意写出一个等式吗?

提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?

谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

5.做练一练的第1题

二、教学例4

1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

2.讲解:要求出方程中未知数的值,要先写“解”,要注意把等号对齐。

3.完成试一试

4.完成练一练

提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

三、巩固练习

1. 做练习一的第3题

2.做练习一的第4题

3.做练习一的第5题

四、全课小结

提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

五、作业

完成补充习题。

板书设计:

等式的性质                            解方程

50=50            50+10=50+10          解: X+10=50

x+a=50+a     50+a-a =50+a-a          X-10=50-10

X=40

检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

50=50 50+10=50+10解:X+10=50

x+a=50+a 50+a-a =50+a-a X-10=50-10

X=40

检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。