数学教案-用不同知识解应用题
- 文档
- 2024-06-30
- 121热度
- 0评论
以下是小编帮大家整理的数学教案-用不同知识解应用题,本文共3篇,仅供参考,希望能够帮助到大家。
教学目的
1.通过复习,使学生能够运用已学的知识解答应用题.
2.通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
3.使学生知道知识的内在联系及其可以转化的辩证唯物主义观点.
教学重点
通过复习,使学生能够运用已学的数量关系,正确解答应用题.
教学难点
通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
教学过程
一、复习准备.
1.导入:我们已经复习了应用题的数量关系掌握了不同的应用题的不同分析、解答方法.今天我们就用我们学过的不同知识来解应用题.(板书课题:用不同知识解应用题)
2.填空:已知甲数是乙数的6倍.那么:
(1)乙数是甲数的
教师追问:为什么填 呢?这时两个数的倍数关系转化成了什么关系?
(2)甲数与乙数的比是( )∶( )
(3)甲数与甲乙两个数的和的比是( )∶( )
(4)乙数与甲乙两个数的和的比是( )∶( )
教师提问:这时两个数的倍数关系转化成了什么关系?
教师总结:通过复习,我们发现了倍数关系、分数关系、比的关系之间,可以互相转化.
二、复习探讨.
(一)教学例6.
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
1.学生读题,分析已知条件和问题.
2.分组讨论:
(1)题目中的数量关系是什么?
(2)松树的棵树是柏树的4倍,可以转化成哪几种关系?
(3)本题有几种解法?
3.学生汇报反馈.
(1)因为:松树的棵数+柏树的棵数=120棵
所以:我们可以根据这个等式列方程解应用题.
解:设柏树种了 棵.
120-24=96(棵)
解:设松树种了 棵.
120-96=24(棵)
答:柏树种了24棵,松树种了96棵.
(2)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1.
所以根据转化的比的关系,可以用按比分配的知识来解答.
4+1=5
120× =96(棵)
120× =24(棵)
答:柏树种了24棵,松树种了96棵.
(3)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的和是柏树棵树的5倍,我根据倍数的数量关系可以运用算术方法解题.
120÷(4+1)=24(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(4)因为松树的棵树是柏树的4倍,所以柏树的棵数就是松树棵树的 ,如果把松树的棵数看作单位1,那么,120棵对应的率就是1+ ,根据倍数的数量关系可以运用算术方法解题.
120÷(1+ )=96(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(5)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1,松树和松树、柏树棵树和的比是1∶5,所以根据转化的比的关系,我可以用比例的知识来解答.
解:设柏树有 棵.
∶120=1∶5
5 =120
=24
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
4.请你以小组为单位,讨论、交流你最喜欢那种方法.为什么?
5.教师总结:在我们解应用题时,一道应用题的数量关系,可以转化成不同解决形式.在解答时,我们选择我们熟练、简便的方法进行解答.
三、巩固反馈.
1.用不同的方法解答下面各题.
(1)幼儿园买来120张彩色电光纸,比买来的白纸少 .这两种纸一共买来多少张?
(2)养鸡场的肉用鸡是蛋用鸡的3倍,肉用鸡比蛋用鸡多15000只.蛋用鸡和肉用鸡各养多少只?
七、课题:
教学目的
1.通过复习,使学生能够运用已学的知识解答应用题.
2.通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
3.使学生知道知识的内在联系及其可以转化的辩证唯物主义观点.
教学重点
通过复习,使学生能够运用已学的数量关系,正确解答应用题.
教学难点
通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
教学过程
一、复习准备.
1.导入:我们已经复习了应用题的数量关系掌握了不同的应用题的不同分析、解答方法.今天我们就用我们学过的不同知识来解应用题.(板书课题:用不同知识解应用题)
2.填空:已知甲数是乙数的6倍.那么:
(1)乙数是甲数的
教师追问:为什么填 呢?这时两个数的倍数关系转化成了什么关系?
(2)甲数与乙数的比是∶()
(3)甲数与甲乙两个数的和的比是()∶()
(4)乙数与甲乙两个数的和的比是()∶()
教师提问:这时两个数的倍数关系转化成了什么关系?
教师总结:通过复习,我们发现了倍数关系、分数关系、比的关系之间,可以互相转化.
二、复习探讨.
(一)教学例6.
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
1.学生读题,分析已知条件和问题.
2.分组讨论:
(1)题目中的数量关系是什么?
(2)松树的棵树是柏树的4倍,可以转化成哪几种关系?
(3)本题有几种解法?
3.学生汇报反馈.
(1)因为:松树的棵数+柏树的棵数=120棵
所以:我们可以根据这个等式列方程解应用题.
解:设柏树种了 棵.
120-24=96(棵)
解:设松树种了 棵.
120-96=24(棵)
答:柏树种了24棵,松树种了96棵.
(2)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1.
所以根据转化的比的关系,可以用按比分配的知识来解答.
4+1=5
120× =96(棵)
120× =24(棵)
答:柏树种了24棵,松树种了96棵.
(3)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的和是柏树棵树的5倍,我根据倍数的数量关系可以运用算术方法解题.
120÷(4+1)=24(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(4)因为松树的棵树是柏树的4倍,所以柏树的棵数就是松树棵树的 ,如果把松树的棵数看作单位1,那么,120棵对应的率就是1+ ,根据倍数的数量关系可以运用算术方法解题.
120÷(1+ )=96(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(5)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1,松树和松树、柏树棵树和的比是1∶5,所以根据转化的比的关系,我可以用比例的知识来解答.
解:设柏树有 棵.
∶120=1∶5
5 =120
=24
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.Xk b1 .co m
4.请你以小组为单位,讨论、交流你最喜欢那种方法.为什么?
5.教师总结:在我们解应用题时,一道应用题的数量关系,可以转化成不同解决形式.在解答时,我们选择我们熟练、简便的方法进行解答.
三、巩固反馈.
1.用不同的方法解答下面各题.
(1)幼儿园买来120张彩色电光纸,比买来的白纸少 .这两种纸一共买来多少张?
(2)养鸡场的肉用鸡是蛋用鸡的3倍,肉用鸡比蛋用鸡多15000只.蛋用鸡和肉用鸡各养多少只?
2.思考题.
甲乙两个工程队合修一段公路,甲队的工作效率是乙队的 ,两个队合修6天正好完成这段公路的 ,余下的由乙队单独修,还需要几天能够修完?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.芳芳的父亲每月收入是780元,母亲每月收入720元.全家每月生活支出的钱数是储蓄钱数的4倍.芳芳家每月储蓄多少元?(用不同的知识解答)
2.洗衣机厂一月份生产了3000台滚筒洗衣机,相当于波轮洗衣机的 .一月份一共生产了多少台洗衣机?(用不同的知识解答)
六、板书设计
用不同知识解应用题
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
方法一方法二方法三方法四方法五
八、课题:量的计量
教学目标
1.进一步理解采用法定计量单位的重要意义.
2.复习长度、面积、体积、质量、时间单位.
3.复习各种计量单位间的进率.
教学重点
指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.
教学难点
掌握各种计量单位的实际大小及进率,正确使用计量单位.
教学步骤
一、直接导入.
提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)
教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习“量的计量”.(教师板书课题)
二、归纳整理.
(一)启发学生回忆:我们学过了哪些量的计量?
教师板书:
长度质量时间
面积
体积(容积)
(二)复习长度、面积、体积单位及进率.
1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?
2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间
的进率是多少?
学生讨论:相邻面积单位之间的进率为什么都是100?
师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.
3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?
学生思考:相邻体积单位之间的进率为什么是1000?
教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.
4.练习.
(1)在()里填上适当的计量单位名称.
一枝铅笔长176()一个篮球场占地420()
一张课桌宽52()一个火柴盒的体积是21()
一间教师的面积是48()一种保温瓶的容量是2()
(2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?
(3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?
(三)复习质量单位.
1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)
2.练习.
①10麻袋大米约1()
②l个鸡蛋约6.5()
③1棵白菜约2.5()
④1名六年级学生体重是40()
(四)复习时间单位.
1.启发学生回忆:学过的时间单位有哪些?它们之间的进率是多少?(并填写下表)
名称 世纪 年 月 日 时 分 秒
进率 ()年 ()月 31日(各月)
30日(各月)
29日(年二月)
28日(年二月) ()时 ()分 ()秒
2.教师强调:
①时间单位间的进率不像前两种计量单位间的进率那么有规律,要记牢、用准.
②“小时”的单位名称按规定应记作“时”.
3.思考.
①怎样判断某一年是闰年还是平年?
②21世纪从什么时间开始?
4.练习.
(1)一年有()个月,分成()个季度.
(2)一个月分成()旬、()旬和()旬.一月的下旬是()天,平年二月的下旬是()天.
(3)采用24时计时法,下午1时就是()时,夜里12时就是()时,也就是第二天的()时.
(五)名数的改写.
1.出示5米.(引导学生,说出各部分名称)
2.单名数、复名数的复习,并举例.
3.填写例1.
(1)3时20分=()分
(2) =()吨()千克
(3)3080克=()千克()克
(4)5分40秒=()分
4.练习.
3千克50克=()克3千克50克=()千克
3050米=()千米()米3050米=()千米
2.4时=()时()分2.4时=()分
2时40分=()时2元4分=()分
三、全课小结.
本节课整理和复习了哪些知识?在理解和运用这些知识时应注意什么?
四、课堂练习.
1.填空.
(1)1米=()厘米
(2)1公顷=()平方米
(3)1平方米=()平方分米=()平方厘米
(4)1升=()毫升
(5)1吨=()千克
(6)平年的第一季度天数是()天.
2.判断.
(1)是21世纪的第一年.()
(2)1992年是闰年.()
(3)数学课本长18分米,宽13分米.()
(4)钟表上时针转动的速度是分针的 .()
五、布置作业.
1.测量两件家具,记录各边的长度,算出表面积和体积.
2.称出两件炊具的质量并记录下来.
3.调查父母的出生年、月、日,算一算平年还是闰年?
4.记录自己从家到学校所用的时间.
六、板书设计
教学目的
1.通过复习,使学生能够运用已学的知识解答应用题.
2.通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
3.使学生知道知识的内在联系及其可以转化的辩证唯物主义观点.
教学重点
通过复习,使学生能够运用已学的数量关系,正确解答应用题.
教学难点
通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
教学过程
一、复习准备.
1.导入:我们已经复习了应用题的数量关系掌握了不同的应用题的不同分析、解答方法.今天我们就用我们学过的不同知识来解应用题.(板书课题:用不同知识解应用题)
2.填空:已知甲数是乙数的6倍.那么:
(1)乙数是甲数的
教师追问:为什么填 呢?这时两个数的倍数关系转化成了什么关系?
(2)甲数与乙数的比是()∶()
(3)甲数与甲乙两个数的和的比是()∶()
(4)乙数与甲乙两个数的和的比是()∶()
教师提问:这时两个数的倍数关系转化成了什么关系?
教师总结:通过复习,我们发现了倍数关系、分数关系、比的关系之间,可以互相转化.
二、复习探讨.
(一)教学例6.
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
1.学生读题,分析已知条件和问题.
2.分组讨论:
(1)题目中的数量关系是什么?
(2)松树的棵树是柏树的4倍,可以转化成哪几种关系?
(3)本题有几种解法?
3.学生汇报反馈.
(1)因为:松树的棵数+柏树的棵数=120棵
所以:我们可以根据这个等式列方程解应用题.
解:设柏树种了 棵.
120-24=96(棵)
解:设松树种了 棵.
120-96=24(棵)
答:柏树种了24棵,松树种了96棵.
(2)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1.
所以根据转化的比的关系,可以用按比分配的知识来解答.
4+1=5
120× =96(棵)
120× =24(棵)
答:柏树种了24棵,松树种了96棵.
(3)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的和是柏树棵树的5倍,我根据倍数的数量关系可以运用算术方法解题.
120÷(4+1)=24(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(4)因为松树的棵树是柏树的4倍,所以柏树的棵数就是松树棵树的 ,如果把松树的棵数看作单位1,那么,120棵对应的率就是1+ ,根据倍数的数量关系可以运用算术方法解题.
120÷(1+ )=96(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(5)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1,松树和松树、柏树棵树和的比是1∶5,所以根据转化的比的关系,我可以用比例的知识来解答.
解:设柏树有 棵.
∶120=1∶5
5 =120
=24
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.Xk b1 .co m
4.请你以小组为单位,讨论、交流你最喜欢那种方法.为什么?
5.教师总结:在我们解应用题时,一道应用题的数量关系,可以转化成不同解决形式.在解答时,我们选择我们熟练、简便的方法进行解答.
三、巩固反馈.
1.用不同的方法解答下面各题.
(1)幼儿园买来120张彩色电光纸,比买来的白纸少 .这两种纸一共买来多少张?
(2)养鸡场的肉用鸡是蛋用鸡的3倍,肉用鸡比蛋用鸡多15000只.蛋用鸡和肉用鸡各养多少只?
2.思考题.
甲乙两个工程队合修一段公路,甲队的工作效率是乙队的 ,两个队合修6天正好完成这段公路的 ,余下的由乙队单独修,还需要几天能够修完?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.芳芳的父亲每月收入是780元,母亲每月收入720元.全家每月生活支出的钱数是储蓄钱数的4倍.芳芳家每月储蓄多少元?(用不同的知识解答)
2.洗衣机厂一月份生产了3000台滚筒洗衣机,相当于波轮洗衣机的 .一月份一共生产了多少台洗衣机?(用不同的知识解答)
六、板书设计
用不同知识解应用题
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
方法一方法二方法三方法四方法五
★
★
★
★
★
★
★
★
★
★