数学《相遇问题应用题》说课稿
- 文档
- 2024-06-24
- 117热度
- 0评论
以下是小编收集整理的数学《相遇问题应用题》说课稿,本文共16篇,希望对大家有所帮助。
数学相遇问题说课稿
教学目标
1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.
2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.
3.渗透运动和时间变化的辩证关系.
教学重点
掌握求路程的相遇问题的解题方法.
教学难点
理解相遇问题中时间和路程的特点.
教学过程
一、以旧引新
(一)口答列式,并说明理由.
1.一辆汽车每小时行60千米,4小时行多少千米?
2.一辆汽车4小时行了240千米,每小时行多少千米?
3.一辆汽车每小时行60千米,行驶240千米需要几小时?教师板书:速度×时间=路程
(二)创设情境
1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
2.小组集体讨论
(1)张华送到李诚家;
(2)李诚来张华家取走;
(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.
3.认识相遇问题
(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?(同时,从两地,相对而行)
(2)两个人之间的距离有什么变化?(越来越近,最后变为零)教师指出:当两个人的距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”板书课题:相遇问题
(三)出示准备题:
张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.
根据已知条件填写下表
走的时间
张华走的路程60米
李诚走的路程70米
两人所走路程的和
现在两人的.距离
1分
60米
70米
2分···
3分···
思考:
1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)
二、教学新课
(一)教学例3
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?
1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.请同学解释这两个词的含义.
2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)
3.由学生尝试解答例3
4.结合线段图订正答案.
方法一:65×4+70×4 方法二:(65+70)×4
=260+280=135×4
=540(米) =540(米)
速度和×相遇时间=路程
5.比较
(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练习
(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?
(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?
讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
(三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
(四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?
1.由学生用手势表述题意.
2.比较:与前面题目相比,有什么不同?又有什么共同之处?
(五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.
甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?
1.由学生用手势语言向同组同学介绍题意.
2.由学生独立解答
3.出示四种不同解法,请同学小组讨论并做出判断.
方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)
四、课堂小结
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动??)今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?
怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?
五、课后作业
(一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?
(二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.过3小时,两车相距多少千米?
一、说教材
工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。
教学重点是:掌握工程问题的数量关系和解答方法。
难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。
二、说教法
现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。
三、说学法。
教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。
四、说教学过程。
根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。
第一环节是复习铺垫。
由于用分数解工程问题与整数解工程问题的`思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。(2)如果这项工程每天完成 ,( )天完成。巩固了旧知,为学习新知作好铺垫。
第二环节是学习新知识,分三步进行。
第一步:加深对整数解工程问题的数量关系的理解。
出示:三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成?
引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。
第二步:探究用分数解工程问题。
这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。
第三步,比较分数解和整数解工程问题,加深印象。
比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。
第四环节是练习、巩固。
练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。
教学目标:
1、了解工程问题的结构特征及数量关系,学会解答比较简单的工程问题。
2、在主动参与、发现和揭示数学原理和方法中提高思维水平。
教学流程
一、复习铺垫
1、谈话:
同学们,我们学校准备在明年暑假把操场上的跑道改造成塑胶跑道。你见过塑胶跑道吗?它有什么优点?但铺塑胶跑道需要很多钱,还需要专业的施工队。
2、出示:
(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。
(2)如果这项工程每天完成 ,( )天完成。
3、揭题:
在日常生活中,像修跑道、造桥、运货、搞绿化等各种工作,我们统称为工程,今天的这节课我们就一起来研究工程问题。
二、探究新知
1、谈话:
如果我们能将修塑胶跑道这项工程进行招标。应聘单位有两个,他们都承诺能保质保量完成任务。但甲工程队单独完成需10天,乙工程队单独完成需8天。
问:(1)如果你是校长,你选择哪个施工队?为什么?
(2)但新学期开学迫在眉睫,为了 同学们在新学期一开学就能在跑道上上体育课,如果你是校长,又该怎么办呢?
2、出示:
三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成。
(1)独立解题 200÷(200÷10+200÷8)= 4 (天)
(2)交流反馈、小结数量关系式:
讨论:200÷10与200÷8各表示什么?这两个商加起来又表示什么?再用200除以它们的和得到了什么?根据什么数量关系算出合作的时间?
板书(工作总量÷工作效率和=合作工作时间)
(3)那如果要修建的塑胶跑道是400米,800米又要多少天时间呢?独立做。
400÷(400÷10+400÷8)=4 (天)
800÷(800÷10+800÷8)= 4 (天)
(4)讨论:三道题做完了,你有什么发现?猜猜如果跑道是1000米的话,用几天时间完成?跑道长度是a米呢?看来完成工程的天数跟工作重量没多大关系?那么到底为什么工作总量在变化,可完工的时间却一样?
3、出示:
例、三毛小学要修一条塑胶跑道,由甲工程队单独施工需10天;由乙工程队单独施工要8天完成。两队共同施工需要多少天完成?
(1)分析思考:A、工作重量不知道怎么办?
B、甲工程队的工作效率是多少?怎样想出来的? 乙工程队呢?
(2)怎样列式。(尝试)。
(3)交流说说 。1÷( + )中。 、各表示什么? + 又表示什么。“1”
课题:相遇问题应用题
教学内容:课本第54页例3以及相应的“做一做”。
教学要求:进一步提高学生分析应用题的能力,学会列综合算式解答相向运动求路程的应用题。
教学过程 :
一、复习。
口答:
①. 一辆汽车从甲地开往乙地,平均每小时行30千米,5小时到达。可以求什么?怎样求?为什么这样求?
②. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,需要5小时。可以求什么?怎样求?为什么这样求?
③. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,每小时行30千米。可以求什么?怎样求?为什么这样求?
问:从以上三道题中可看出什么数量关系?
速度×时间=路程
二、新授。
1、导入 新课。
刚才我们复习了一个物体运动的行程应用题,今天我们要来学习两个物体运动的行程应用题。两个物体运动的行程应用题比较复杂,比如出发地点、行车方向、出发时间是相同还是不相同,运动的结果又怎样呢?这些都是我们研究的内容。
出示准备题:
张华家距李诚家390米,两人同时从家里出发,向对方走去,张华每分走60米,李诚每分走70米。
390米
60米
60米
70米
70米
张华
李诚
问:题目中“同时”是什么意思?(出发时间一样)
出示下表,学生独立完成。
走的时间
张华走的路程
李诚走的路程
两人所走的路程和
现在两人的距离
1分
60米
70米
130米
260米
2分
120米
140米
260米
130米
3分
180米
210米
390米
0米
问:出发3分后,两人之间的`距离又是多少?两人所走的路程的和与两家的距离有什么关系?(利用教具演示)
教师指出:像上面这样,运动方向是相向的、出发地点为两地的,出发时间的同时的,运动结果是相遇的,我们就把它称为相遇问题。现在我们就来学习相遇问题的应用题的解答方法。(板书课题:相向运动求路程的应用题)
2、教学例5:
小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分,两人在学校门口相遇。他们两家相距多少米?
①. 引导学生分析题意,说出已知什么,要求是什么?
教师利用教具演示,画出意图让学生观察、思考:
小强走的是哪一段?
小丽走的是哪一段?
他们到校所走的路程与两家相距的米数有什么关系?
要求两家相距多少米,先要求什么?(先求出两人到校时各走了多少米?)
怎样分步解答?(让学生口述每一步算的是什么,说出算式,教师板书。)
65×4=260(米)
70×4=280(米)
260+280=540(米)
怎样列综合式?(学生口述,并算出结果,教师板书。)
65×4+70×4
=260+280
=540(米)
答:(略)
②. 再引导观察示意图,启发另一种解法。
问:他们两人每走1分,他们之间的距离靠近了多少米?[ 65+70=135(米)]到校时经过了几分?(4分)要求两家相距多少米,还可以怎样算?怎样分步解答?(学生口述,教师板书:
65+70=135(米)
135×4=540(米)
综合式:
(65+70)×4
=135×4
=540(米)
③. 引导学生比较两种解法。
65×4+70×4 (65+70)×4
想一想:第一种解法是先求什么,后求什么?第二种解法是先求什么,后求什么?
议一议:这两种解法的综合算式不同,为什么得数一样?它们之间有什么联系?
哪一种算法比较简便?
④. 小结相向运动求路程应用题的特点和解题方法:速度和×相遇时间=相遇路程
三、巩固练习。
1.指导看书第58、59页,后练习第59页的做一做。
2.看算式把条件或问题补充完整。
①. 小明和小华同时从大桥的两端相向走来,小明每分走50米,小华每分走60米,经过5分两人相遇。 ?算式:(50+60)×5
②. 甲乙两位同学骑自行车从东西两站
甲同学每小时行20千米,乙同学每小时行25千米, ,东西两站相距多少千米?算式:(20+25)×3
3.课本练习十四第1、2、3题。
人教版小学五年级数学说课稿《相遇问题》
一、说教材
1、教学内容:
本课题是“九年义务教育(人教版)”六年制小学数学第九册第二单元“相遇问题”第一课时的内容,
2、教材简析:
相遇问题是行程应用题的一部分。这部分内容是在学生掌握一个物体运动的有关速度、时间 和路程之间数量关系的基础上进行的。主要是研究两个物体在运动中速度、时间和路程之间的数量关系。这部分内容又是今后学习较复杂的行程问题及工程问题的基础。例如数学书58页-8题(长沙到广州的铁路长699千米,一列货车从长沙开往广州,每小实行69千米。这列货车开除后1小时,一列客车从广州开往长沙,每小时行71千米,再经过几小时两车相遇?)、58页-11题。同时,由于相遇问题中术语较多,如相向、相背、同时、相距,并且速度和的概念学生不易理解,此类题目的发展变化也比较多,因此也是应用题教学的难点。
3、教学目标:
(1)通过创设情境帮助学生理解有关相遇问题的术语:同时、两地、相向、速度和等,形成两个物体运动的空间观念。
(2)经历解决实际问题的过程,引导学生学会分析相遇问题中速度、时间、路程这三种量之间的关系,掌握相遇问题求路程的解题方法。
(3)经历比较、优化等学习过程,发展数学思维能力。感受数学问题的探索性,体验数学与生活的紧密联系。
(4)培养学生细致的审题习惯,提高学生分析问题和解决问题的能力。
二、学生分析:
这个年龄段的学生对空间感缺乏认知能力,所以首要解决的就是一些术语的理解,行程问题在生活中我们常遇到,却很少用专业的词语去表述所以我特意设置了真实场景、电脑演示、文具模拟帮助学生建立对于物体位置移动的空间想象感。
我班的大部分学生都属于龙洞本村的孩子,平时的家庭辅导仅仅限于检查作业是否完成。虽然三、四年级就开始对应用题的数量关系进行训练,不过一小半的学生仍然感到吃力,对于三步应用题经常会做却不会写数量关系,讲不清楚道理,学生的语言表达能力是比较差的,比较习惯寻找题目特点,套用相对应的方法。一部分学生能够利用分析法从具体问题出发,找到解题的方法,对于一部分学困生,抽象概括出性 速度和Χ时间=路程 这个公式是比较困难的,所以从复习、探讨问题到解决问题我的步子都比较小,多让学生讲解算式的含义,帮助学困生记忆、理解方法。
基于学生情况,我选择了例2“两个工程队合开一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?”对“进度”是多角度的,理解差的可以看作是前进的速度,也可以看作工作效率。
练习的.设置从基础题到提高题有一定的梯度,尽量照顾每一层次的学生。
三、说教法
教法:通过情景教学,创设最佳学习情景,充分发挥多媒体计算机辅助教学的优势,紧扣教学内容,科学直观地演示两个物体相对运动的情景,这样把数学问题转化成动态的数学模型展现出来,
让学生自主提出问题探究,激发学生兴趣,激活思维,逐层推进,分散难点,增强感性认识,建立表象、抽象规律。
四、教学流程:
教学重点:掌握相遇问题求路程的算理和解答方法。
教学难点:正确理解“速度和”的含义。
教具准备:课件
学具准备:两块橡皮(或两只笔)
(一)、创设情景、逐步感知
帮助学生理解相遇、相向、同时
师请两位学生从教室两头相向走—相遇—相背走到头,让学生围绕走的方向、走的结果、走的路程几个问题进行观察。两个学生走走停停,学生可以观察不同时间里的运动结果,走了的路程、还有多少路程。这段活动需要一些时间,但对整体认识行程问题有好处。
考虑学生的基础、教学目标,我对教材进行了重组。将准备题和例1合并,并为以后的工程问题做铺垫,特意设置了例2,修地铁。首先学生通过情境演示(两学生表演相遇)理解“相遇”、“相向”、“同时”,对相遇问题建立一个初步的直观的认识;再通过电脑课件的演示,加深“速度和”的理解,知道随着时间的变化,物体的位置将发生移动;最后学生可以利用简单的学具来模拟相遇过程。通过这3个过程在学生脑海中逐步建构物体移动的空间模型。
(二)、探究问题、加深理解
(大屏幕出示:小强和小丽同时从甲乙两地相对走来,小强每分钟走100米,小丽每分钟走50米,4分钟后两人相遇。)
1、根据这些信息,你想提点什么数学问题吗?
问题1小强和小丽一共走了多少米?
问题2:小强走了多少米?小丽走了多少米?
问题3:小强比小丽多走了多少米?
2、通过问题2复习: 速度×时间=路程
3、这节课重点来研究:小强和小丽一共走了多少米?理解 相距
(两地共有多少米? 甲乙两地有多少米? 甲乙两地相距多少米?)
4、生上来板书:(1)100×4+50×4 (2)(100+50)×4
5、反馈:板书算式。同学们对他们的解法有什么疑问就提出来?(每一步各表示什么?)
6、小结:(100+50)表示他们两个人1分钟走的米数,他们走了4分钟,就是4个150米。(课件演示)
速度和×时间=路程 (师板书数量关系,齐读)
7、再实践,同桌合作,用橡皮代替两人,演示相遇的过程。
学生可能会有个难点问题:为什么不列成(100+50)×(4+4),如何处理,体现突破难点?
可以用课件演示大家走路花的时间是共同的4分钟,或者可以用这个例子来解决:上数学课,你一节课多少分钟?他一节课多少分钟?他两这节课多少分钟?那我们大家这节课上了多少分钟?
根据条件学生提出几种问题,这些问题也很好的将学过的知识过渡到要学的新知识;通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。
人教版小学五年级数学《相遇问题》说课稿
一、说教材
1、教学内容:
本课题是“九年义务教育(人教版)”六年制小学数学第九册第二单元“相遇问题”第一课时的内容。
2、教材简析:
相遇问题是行程应用题的一部分。这部分内容是在学生掌握一个物体运动的有关速度、时间 和路程之间数量关系的基础上进行的。主要是研究两个物体在运动中速度、时间和路程之间的数量关系。这部分内容又是今后学习较复杂的行程问题及工程问题的基础。例如数学书58页-8题(长沙到广州的铁路长699千米,一列货车从长沙开往广州,每小实行69千米。这列货车开除后1小时,一列客车从广州开往长沙,每小时行71千米,再经过几小时两车相遇?)、58页-11题。同时,由于相遇问题中术语较多,如相向、相背、同时、相距,并且速度和的概念学生不易理解,此类题目的发展变化也比较多,因此也是应用题教学的难点。
3、教学目标:
(1)通过创设情境帮助学生理解有关相遇问题的术语:同时、两地、相向、速度和等,形成两个物体运动的空间观念。
(2)经历解决实际问题的过程,引导学生学会分析相遇问题中速度、时间、路程这三种量之间的关系,掌握相遇问题求路程的解题方法。
(3)经历比较、优化等学习过程,发展数学思维能力。感受数学问题的探索性,体验数学与生活的紧密联系。
(4)培养学生细致的审题习惯,提高学生分析问题和解决问题的能力。
二、学生分析:
这个年龄段的学生对空间感缺乏认知能力,所以首要解决的就是一些术语的理解,行程问题在生活中我们常遇到,却很少用专业的词语去表述所以我特意设置了真实场景、电脑演示、文具模拟帮助学生建立对于物体位置移动的空间想象感。
我班的大部分学生都属于龙洞本村的孩子,平时的家庭辅导仅仅限于检查作业是否完成。虽然三、四年级就开始对应用题的数量关系进行训练,不过一小半的学生仍然感到吃力,对于三步应用题经常会做却不会写数量关系,讲不清楚道理,学生的语言表达能力是比较差的',比较习惯寻找题目特点,套用相对应的方法。一部分学生能够利用分析法从具体问题出发,找到解题的方法,对于一部分学困生,抽象概括出性 速度和Χ时间=路程 这个公式是比较困难的,所以从复习、探讨问题到解决问题我的步子都比较小,多让学生讲解算式的含义,帮助学困生记忆、理解方法。
基于学生情况,我选择了例2“两个工程队合开一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?”对“进度”是多角度的,理解差的可以看作是前进的速度,也可以看作工作效率。
练习的设置从基础题到提高题有一定的梯度,尽量照顾每一层次的学生。
三、说教法
教法:通过情景教学,创设最佳学习情景,充分发挥多媒体计算机辅助教学的优势,紧扣教学内容,科学直观地演示两个物体相对运动的情景,这样把数学问题转化成动态的数学模型展现出来。让学生自主提出问题探究,激发学生兴趣,激活思维,逐层推进,分散难点,增强感性认识,建立表象、抽象规律。
四、教学流程:
教学重点:掌握相遇问题求路程的算理和解答方法。
教学难点:正确理解“速度和”的含义。
教具准备:课件
学具准备:两块橡皮(或两只笔)
(一)、创设情景、逐步感知
帮助学生理解相遇、相向、同时
师请两位学生从教室两头相向走—相遇—相背走到头,让学生围绕走的方向、走的结果、走的路程几个问题进行观察。两个学生走走停停,学生可以观察不同时间里的运动结果,走了的路程、还有多少路程。这段活动需要一些时间,但对整体认识行程问题有好处。
考虑学生的基础、教学目标,我对教材进行了重组。将准备题和例1合并,并为以后的工程问题做铺垫,特意设置了例2,修地铁。首先学生通过情境演示(两学生表演相遇)理解“相遇”、“相向”、“同时”,对相遇问题建立一个初步的直观的认识;再通过电脑课件的演示,加深“速度和”的理解,知道随着时间的变化,物体的位置将发生移动;最后学生可以利用简单的学具来模拟相遇过程。通过这3个过程在学生脑海中逐步建构物体移动的空间模型。
(二)、探究问题、加深理解
(大屏幕出示:小强和小丽同时从甲乙两地相对走来,小强每分钟走100米,小丽每分钟走50米,4分钟后两人相遇。)
1、根据这些信息,你想提点什么数学问题吗?
问题1小强和小丽一共走了多少米?
问题2:小强走了多少米?小丽走了多少米?
问题3:小强比小丽多走了多少米?
2、通过问题2复习: 速度×时间=路程
3、这节课重点来研究:小强和小丽一共走了多少米?理解 相距
(两地共有多少米? 甲乙两地有多少米? 甲乙两地相距多少米?)
4、生上来板书:(1)100×4+50×4 (2)(100+50)×4
5、反馈:板书算式。同学们对他们的解法有什么疑问就提出来?(每一步各表示什么?)
6、小结:(100+50)表示他们两个人1分钟走的米数,他们走了4分钟,就是4个150米。(课件演示)
速度和×时间=路程 (师板书数量关系,齐读)
7、再实践,同桌合作,用橡皮代替两人,演示相遇的过程。
学生可能会有个难点问题:为什么不列成(100+50)×(4+4),如何处理,体现突破难点?
可以用课件演示大家走路花的时间是共同的4分钟,或者可以用这个例子来解决:上数学课,你一节课多少分钟?他一节课多少分钟?他两这节课多少分钟?那我们大家这节课上了多少分钟?
根据条件学生提出几种问题,这些问题也很好的将学过的知识过渡到要学的新知识;通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。
(三)、解决问题,概括方法
(大屏幕出示:两个工程队合作修一段地铁。同时各从一端开凿。甲队的进度12米/天,乙队的进度14米/天,经15天打通。这段地铁长多少米?)
先指导学生审题:进度可以理解前进的速度,那就是行程问题,“经过15天打通是什么意思?地铁的的长与进度有什么关系?地铁的长可以通过什么去求?还可以通过什么去求?”
1、能独立解决吗?
2、说说它们相同的地方?
(大屏幕出示刚才做过的两道题目)
3、小结
这个例题的设置使得本课更具有开放性,一是为工程问题打下了基础,也放开了学生的思维,避免应用题中经常出现的对号入座的现象,
五、阶梯练习,扩展思维
1、学生汇报生活中类似问题。
2、基础练习(只列式,不计算)
(1)两列火车同时从甲乙两站相对开出,客车每小时行60千米,货车每小时行40千米,经过4小时两车相遇,甲乙两站相距多少千米?
(2)四(1)班为准备联欢会折纸花,男同学每小时折136朵纸花,女同学每小时折164朵纸花,他们共同折了2小时,一共折了多少多纸花?
(3)甲乙两个打字员合打一份文稿,甲每分钟打35个,乙 每分钟打40个,两人同时打15分钟完成任务。这份文稿一共有多少个字?
生独立解答,并说出算式的含义。
3、扩展练习
最后,我们来表演一下相遇问题怎样?
(请两生上来,分别给他们一个速度70和80,老师手中拿时间4分钟)
第一种情况:同时出发,4分钟后相遇。求路程?
第二种情况:同时出发,4分钟后两人还相距200米。求路程?
第三种情况:同时出发,相遇后,两人擦肩而过,4分钟后两人还是相距200米。求路程?
4、提高练习
(大屏幕出示题目:小张和小李在环行操场跑步,两人同时从A点出发,反向而行。小张每秒跑4米,小李每秒跑6米,经过20秒在B点相遇。操场的跑道长多少米?)
如果时间不够,留带课后完成。
练习是课堂教学的重要组成部分,设计练习时,我对教材作了处理,力求形式多样,条件问题开放,满足不同层次的需求,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。本课基本练习,要求列式不计算,是希望将更多的时间放在对算式的理解上,将时间留给学生说算式的含义,列式的理由,说的形式由点带动面,即由好生带动差生,(差生可以仿造说)到同桌互说,借此进一步突破本课的重难点—— 求路程的算理和解题方法,逐步提高语言表达能力。
相遇应用题说课稿
一、说教材
1.说课内容:九年义务教育六年制小学数学第九册第58-59页的准备题和例5,完成“做一做”的题目和练习十四的第1-3题。
2.教学内容的地位与作用:
学生在前几册教材中已经学过一个物体在运动中的速度、时间、路程之间数量关系的应用题。这为学习两个物体的运动情况作了充分的知识铺垫和思路孕伏。教材重点编入了两个物体(两人、两车、两船等)相向运动的应用题,主要学习“相遇求路程”和“相遇求时间”的知识。本课学习“相遇求路程”,它是在一个物体运动情况的基础上引伸发展的,使知识类推迁移到本课题。通过这部分内容的学习,使学生从整体上理解相遇问题的意义、结构特征、掌握数量关系、学会分析和解答这类应用题的方法,从而培养学生的思维品质,提高学生解决实际问题能力。
3.教材的结构层次及编排意图:
相遇应用题的知识从一个运动物体变成两个运动物体,涉及到物体运动的速度、方向、出发地点,出发时间等不同因素,学生在这方面的生活经验较少,难于理解相向运动的变化特点,为帮助学生更好地理解掌握知识,教材有层次地显示了本课题的知识结构:
(1)先出示一个准备题,学生通过图示加深对“两地、同时出发、相对而行”含义的领会。接着,通过填表分析每经过1分、2分、3分后,两人之间的距离变化,让学生理解什么是“相遇”,相遇时“两人所走的路程之和等于两地间的距离”这一数量关系式,为学习例题扫除障碍。最后通过例5的学习,引导学生按照两种不同的思路去分析应用题的数量关系。第一种解法:先求两人各自走的路程,再加起来就是总路程;第二种解法:先求每分两人所走的路程的和,即是两人的速度和,再乘以相遇时间,就得总路程。这种解法不仅比第一种解法简便,而且是学习“相遇求时间”的基础。通过新知的学习,培养了学习的初步逻辑思维能力和分析解决问题的能力。
(2)为了使学生熟练地掌握解答相遇求路程应用题的方法,教材在“做一做”和练习十四中,除编排了相向运动的相遇问题以外,还编入了一些稍有变化的题目,如:背向而行,不同时间出发的情况,这样不仅扩展了学生思维,防止思维定势,也培养了学生认真审题的良好习惯。
根据以上分析的结构特点和学生的认知规律,确定本课题的教学目标和教学重难点。
4.教学目标:
(1)使学生初步理解相遇问题的意义。
(2)使学生会分析相遇问题的数量关系和解题方法。
(3)培养学生初步逻辑思维能力。
5.教学重点:
相遇问题中数量关系的理解和解题思路的分析。
6.教学难点:
解答问题时对速度和的理解和运用。
7.教学关键:
理解清楚每经过一个单位时间,两物体之间的距离变化。
二、说教法学法的选择
1.运用知识的迁移规律,以旧引新,启动学生思维。
数学知识的连贯性很强。在教学新知识时,要注意新旧知识的内在联系,抓住新知识与原有知识结构、认识水平的共同点和分化点,为学生架起从旧知识到新知识的桥梁,启动学生的思维活动。由于相遇问题是由两个物体运动完成的,其数量关系和解题思路是在一般的行程问题的基础上发展而来的`。所以先复习由一个物体运动求路程的行程问题,为学习新知作了适当的铺垫。
2.运用多媒体教学手段,丰富感知,激发学习兴趣。
兴趣是最好的老师。针对学生好奇、好新、好动的特点,在教学中科学地运用多媒体计算机辅助教学,有效地激活课堂教学的各个环节,提高教学效率。相遇问题的教学运用线段图或教具演示等传统手法,学生较难感知两个物体各自用不同速度运动的状态,给学生理解题意造成一定的困难。本课运用多媒体教学手段,提供丰富的表象信息,使学生多方位感知事物,既激发学生学习的欲望,又突破了教学重点、难点,从而促进学生积极参与学习过程。
3.引探教学,发挥学生的能动性。
随着科学技术的发展,未来的文盲将不是不识字的人,而是不会学习的人。教学过程中,要充分调动和发挥教师的主导作用和学生的主体作用,激发学生主动探索的精神。在本课教学中,先让学生读题审题,利用直观的多媒体演示,加深理解关键的字、词、句,并引导学生通过观察、比较、分析,发现出相遇问题的特征、规律,概括出其数量关系式。在已有第一种解题思路的基础上把学习的主动权交给学生,尝试第二种解法,并归纳出两种解题的方法。使学生在发现矛盾、解决矛盾的过程中更牢固地掌握知识,自学能力,独立思考能力和逻辑思维能力也得到不同程度的培养。
4.精心设计课堂练习,提高教学效率。
学生的认知过程是一个不断深化的过程。学习完一个新知识后,教师精心设计一些有层次、有坡度、发展性的课堂练习,是全面落实双基教育,提高教学效率的有效措施。因此在教学中,设计了四个层次的练习:对应练习、深化练习、综合练习、发展练习。多形式的练习,不仅激发了学生的学习兴趣,也反馈了对此类应用题结构、解法的掌握,防止了思维定势,还培养了学生细心审题,认真分析的良好学习习惯。有效地促进了素质教育。
三、教学程序设计
(一)复习铺垫:
1.张华每分钟走65米,走了4分钟,一共走了多少米?(口答)
提问:为什么这样求?谁会用一个数量关系式表示?
2.李诚每分钟走70米,走了4分钟,_____________?
由学生补充问题并进行计算。
以上练习,复习了由一个物体运动求路程的应用题的结构和数量关系。唤起了学生对旧知的回忆,使学生能顺利地应用旧知识和学习方法去获取新知识,为学习准备题做适当的铺垫。
(二)新知探索:
1.导入新课:刚才我们复习了一般的求路程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。
承上启下的谈话,把学生引入到与所提问题的情景之中,激发学生迅速进入学习状态。
2.学习准备题:
(1)读题看电脑演示,初步理解题意。
问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?学生边回答,教师边归纳板书:“两地、同时出发,相向而行”的相遇问题的结构特征。
(2)边演示边填写P58表格的数据,并分析数量关系。
先由教师引导学生填写1分钟的路程变化表,再让学生独立填写2分、3分的路程变化情况表,并通过电脑演示,学生校对答案。最后引导学生观察表格的第4列数据,归纳出:当两人距离为0时,说明两人相遇了,并推导出:两人所走路程的和与两家的距离正好相等的数量关系式。
通过多媒体演示,积累表象认知,在屏幕上呈现出相遇问题的特征和数量关系式,帮助学习顺利理解题意,为学习新知扫除障碍。同时,生动清晰、新鲜活泼的画面,有效地引起学生的注意力和兴趣,激发了学生的求知欲。
3.小结并揭示课题:
像上题,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。
4.讲授例5:
①出示例5,教师读题,学生说出已知条件和问题。
②启发学生学习第一种解法。
演示后提问:a.小强和小丽走的路程各是哪一段?用色段表示。
b.两人4分钟所走路程的和与两家相距的米数有什么关系?
c.要求两家相距多少米?可先求什么?再求什么?
学生回答后,指一名学生口述解题方法,教师板书。
③启发学生学习第二种解法。
先让学生尝试学习,再提问其解题思路,最后通过电脑演示来验证答案,重点理解“速度和”的含义。
④小结两种解题方法。
⑤学生看P58例5。
通过教师有机的设问、引导,学生的观察分析,很快得到第一种解题思路和解法;尝试学习第二种解法后,通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。
(三)巩固练习:
1.对应练习:P59“做一做”的两小题。
2.深化练习:P61练习十四的第2题。
运用多媒体演示两辆汽车背向而行的动态,直观生动、引入意境。使学生马上明白:当两个物体同时从一个地方背向而行,它们的结果是相距,同样可用“相遇求路程”的解法求相距路程。这样既巩固所学知识,又扩展了学生思维。
3.综合练习:
(1)两辆汽车同时从A、B两城相对开出,甲车每小时行38千米,乙车每小时行46千米。经过4小时,两车还相距50千米,A、B两城相距多少千米?
正确的算式是( )。
A.(38+46)×4 B.38×4+46×4+50
C.(38+46)×4-50 D.(38+46)×4+50
(2)A、B两城相距386千米。甲、乙两辆汽车同时从这两地相向开出。甲车每小时行38千米,乙车每小时行46千米,开出4小时后,还相距多少千米?
正确的算式是( )。
A.(38+46)×4 B.(38+46)×4+386
C.386-(38+46)×4
4.发展练习:P61练习十四的第3题。
此题是两列火车相向行驶的相遇求路程的扩展题,由于甲车先开出1小时,即运动时间改变,求相遇路程的方法也有了变化,给解题带来一定的困难。因此,教学时运用多媒体直观形象的演示,帮助学生突破难点,在此基础上进行一题多解的练习,发展思维的深刻性和创造性。
(四)课堂总结:
这节课我们学习了两个物体相向运动的行程问题,其中求路程的解答方法通常有两种:一是先求出两个物体各自走的路程,再将它们各走路程合起来,求得总路程;二是用速度和乘以相遇时间也求得总路程。
(五)布置作业: P61第1题,P62第12题。
相遇问题应用题及答案
相遇问题
【数量关系】相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解“第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。
例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
下面的关系式必须牢记:
(1)速度和×相遇时间=相遇路程
(2)相遇路程÷速度和=相遇时间
(3)相遇路程÷相遇时间=速度和
速度和:两人或两车速度的和;
相遇时间:两人或两车同时开出到相遇所用的时间。
【习题1】:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?
【习题2】:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?
【习题3】:张杰和姐姐两人从相距米的两地相向而行,张杰每分钟行110米,姐姐每分钟行90米,如果一只狗与张杰同时同向而行,每分钟行500米,遇到姐姐后,立即回头向张杰跑去,遇到张杰再向姐姐跑去,这样不断来回,直到张杰和姐姐相遇为止。狗共行了多少米?
【习题4】:甲每小时行7千米,乙每小时行5千米,两人由相隔18千米的两地相背而行,几小时后两人相隔54千米?
【习题5】:甲乙两艘舰由相距418千米的两个港口同时相对开出,甲舰每小时行36千米,乙舰每小时行34千米,开出1小时候,甲舰因有紧急任务返回原港,又立即起航与乙舰继续相对开出,经过多少小时两舰相遇?
【习题6】:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米?
『习题解析』
【习题1】:
(86+102)×5=940千米或者86×5+102×5=940千米
【习题2】:
20÷2-6=4千米或者(20-6×2)÷2=4千米
【习题3】:
要求狗跑的路程,必须知道狗的速度和狗跑的时间,狗的速度是每分钟500米,狗的时间其实就是张杰和姐姐相遇的时间。
相遇时间/狗跑的时间:2000÷(110+9=)=10(分钟)
狗跑的路程:500×10=5000(米)
【习题4】:
其实两人真正相隔的.是(54-18)千米
(54-18)÷(7+5)=3小时
【习题5】:
其实两艘军舰行驶的总距离是(418+36×2)千米
(418+36×2)÷(36+34)=7小时
【习题6】:
35×2÷(32-18)=5小时——相遇时间
(32+18)×5=250千米——甲乙距离
【能力培养训练——内化能力】
1、甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?
2、甲乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需要6小时,乙车从B城到A城需要12小时,两车出发后几小时相遇?
3、甲乙两列火车同时从相距700千米的两地开出,甲车每小时行75千米,经过5小时相遇,乙车每小时行多少千米?
4、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时14千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?
5、东西两镇相距20千米,甲乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人的速度各是多少?
6、甲乙两辆汽车同时从东西两地相向出发,甲车每小时行48千米,乙车每小时行54千米,两车在离中点36千米的地方相遇,求东西两地间的路程是多少千米?
7、两辆汽车同时从甲城出发,相背而行,快车每小时行43千米,慢车每小时行37千米,经过16小时,它们相距多少千米?
【能力培养训练——内化能力】答案
1、
(75+69)×18=2592千米
2、
480÷6=80千米 480÷12=40千米
480÷(80+40)=4小时
3、
700÷5-75=65千米
4、
18÷(5+4)=2小时 2×14=28千米
5、
56-20=36千米 36÷3=12千米 12÷(2+1)=4千米
12-4=8千米
6、
甲车其实比乙车多开了36×2=72千米,这是由于两车速度之差造成的。
36×2÷(54-48)=12小时 (54+48)×12=1224千米
7、
(43+37)×16=1280千米
相遇问题说课稿
各位领导,老师:大家好!
今天,我说课的内容是现代小学数学四年级上册第三单元《三步计算和应用》中的相遇问题。从以下三方面进行我的说课:分析教材,理清思路;优选教法,注重学法;优化程序,突出主体。
一、分析教材,理清思路
本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。
本节课的教学目标是:
1、知识技能目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。
2、发展性目标:经历比较、优化的学习过程,发展求异思维、逆向思维的能力。
3、情感性目标:感受数学问题的探索性,激发学生兴趣,体验数学与生活的密切联系。
在实施知识目标过程中,重点是让学生在“做”中发现规律,从而理解相遇问题的数量关系,掌握解答方法。
二、优选教法,注重学法
学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。
三、优化程序,突出主体
本节课的教学流程分为四个部分:
(一)在情境中感知;(二)在游戏中引入;(三)在操作中发现;(四)在巩固中深化;(五)在总结中提高
(一)在情境中感知
引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)
[建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]
(二)在游戏中引入
1、理解意义:新授课时,我以学生经常在做的两个游戏为主线,激发学生的学习兴趣,使学生初步感受数学与日常生活的密切联系,并揭示课题——相遇问题
游戏1:红绿灯——相向 游戏2:跨步子——相对
思考:两个游戏,有什么相同点和不同点
教师画出线段图,帮助学生理解
2、联系生活——提问:在实际生活中还有哪些情况属于相遇问题?
3、归纳小结——要想出现相遇的情况应具备哪些条件?
(板书:两个物体、同时、两地、相对、相遇)
教师指出——本节课侧重研究两个物体“同时”行进的规律。
(三)在操作中发现
这是本节课的中心环节。在充分认识两种运动方式后,问“你想研究哪种运动方式”,“认识了这两种运动方式,你想通过这两种运动方式知道什么”。现在小组合作,我们来研究相遇问题,请你利用相遇卡摆一摆,并完成表格
小组合作:
(1)利用相遇卡,两位同学同时行进,一位每次行3厘米,另一位每次行进2厘米。
(2)每行进一次把数据填入表中。
行的`次数
红色线段长
兰色线段长
两色线段长度和
两色线段距离
(3)观察表中的数据,研讨发现了什么?
[设计这一实践活动的目的,是让学生在“做”中感受两物体同时从两地相向而行的运动规律,更好地去理解相遇问题的解题规律。:如:①两者之间的距离越来越小,直至为0,即相遇了;②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。在学生不断质疑,解疑过程中,学生的学习能力得以培养,探索求知的欲望得以激发,也使课堂上的单向信息交流变为多向信息交流。]
(4)借助多媒体演示,突破难点。(多媒体省时,高效,直观,生动等特色的优势被课堂教学广泛使用,运用多媒体动态演示相遇过程,抽象出线段图,由直观到抽象,即让学生学的轻松,又分散的教学难点。
2、应用规律
例:(媒体出示)70页,例2:两个邮递员同时从相距3000米的两地相对而行。骑摩托车的速度是800米/分,骑自行车的速度是200米/分。经过几分钟两个邮递员相遇?
(1)自己选择学习方式
A、独立完成(鼓励用多种解法)
B、借助教材(依据线段图列式解
C、请教同学
(2) 指名板演,讲解思路
[在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,鼓励学生用多种方法,最大限度地发挥了学生的主动性。]
(四)在巩固中深化
练习是课堂教学的重要组成部分,设计练习题时,我对教材做了处理,设计了一个“智力大冲浪,智夺小红旗”的环节,力求形式多样,条件问题开放,引导学生从不同的角度思考问题,留给学生思维的空间。
第一环节:起跑线,是只列式不计算的基本练习
1、两个工程队合开一条隧道。同时各从一端开凿。甲队的进度是12米/天,乙队的进度是14米/天。经15天打通。这条隧道长多少米?(用两种方法解答)
2、小名和小化从相距180米的跑道上同时相对而行,小名每分钟42米,小化每分钟48米,两人几分钟后相遇?
第二环节:加油站:自选超市:让学生依个人掌握知识情况,选择练习题。
1、比一比三道题的联系与区别;
A、两辆汽车同时从两地相对开出,甲车每小时行55千米,乙车每小时行75千米,3小时相遇。两地相距多少千米?
B、两辆汽车同时从相距390米的两地相对开出,甲车每小时行55千米,乙车每小时行75千米。几小时相遇?
C、两辆汽车同时从相距390米的两地相对开出,经3小时相遇,甲车每小时行55千米,乙车每小时行多少千米?
2、两辆汽车同时从一个地方相反的方向开出,甲车每小时行44.5千米,乙车每小时行3805千米。经过3小时,两车相距几千米?
3、客车和货车同时从A、B两地相对开出。客车每小时80千米,货车每小时70千米,经过4小时,两车相距10千米。A、B两城相距多少千米?
第三环节:凯旋门:
小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。
[设计开放性的练习,我考虑到满足不同层次学生的求知欲,因材施教,使每个学生在发散性、多维度的思维活动中提高解决实际问题的能力。]
“你真棒”“祝贺你”随着一声声赞扬,同学们肯定会一路过关斩将,站到领奖台上。
(四)在总结中提高
谈一谈本节课有什么收获?
相遇问题
【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解“第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。
例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
相遇应用题
1、两辆汽车同时从工A、B两城相对开出,从A城开出的汽车每小时行38千米,从B城开出的汽车每小时行42千米,4.5小时后两车相遇,A、B两城的距离是多少千米?
2、两个筑路队合筑一条长1米的公路,一个队每天筑115米,另一个队每天筑125米,多少天可以完工?
3、一辆卡车和一辆轿车分别从甲乙两城相对开出,卡车每小时行40千米,轿车每小时行60千米,6小时相遇。甲乙两城相距多少千米?
4、一辆卡车和一辆轿车同时从甲城开往乙城,卡车每小时行40千米,轿车每小时行60千米,行了6小时。两车相距多少千米?
5、快车每小时行60千米,是慢车每小时行的1.5倍,现两车分别从相距240千米的AB两地同时相对开出,在某地相遇,相遇地点离AB两地各多少千米?
6、修一条水渠,每天修60米,需要40天修完。
(1)如果每天多修20米,几天可以修完?
(2)如果每天修80米,可以提前几天完成?
(3)如果要提前20天完成,每天应修多少米?
7、张丽买了3支铅笔和5本练习本,共用了8.4元。已知每本练习本要1.2元,每支铅笔多少元?
8、工程队修一条长12.6千米的公路,前3个月平均每月修2.4千米。剩下的如果每月修2.7千米,还要修几个月才能修完?
9、两艘客轮同时从两港相对行驶,甲轮每小时行40千米,乙轮每小时行36千米,早上8时开出,晚上11时相遇,两港口相距多少千米?
1.小学数学应用题格式
2.小学数学重要应用题
3.小学数学应用题及答案
4.小学数学应用题分类
5.小学数学简单应用题
6.小学数学应用题精选
7.小学数学路程应用题
8.小学数学毕业应用题
9.小学数学应用题课件
10.举例小学数学应用题
相遇应用题数学教案设计
一,情境铺垫,导入 新课.
师:四年(一)班的张华同学这几天可忙拉,她正准备着下周的的数学奥数。你看,现在她正要去李诚家请教数学题。
.(大屏幕显示器上出现了配乐动画演示)
1,配乐动画:张华在从自己家向李诚家走去。(或者线段图)
①,指导观察,提出问题:张华每分钟走60米,走了6分钟,走了多少米
师:哪位同学来说说张华走了多少米。
师:好,你来说说是怎么做的?
②,学生口头列式回答后,复习数量关系:速度x时间=路程
师:也就是说求张华走的路程就相当于求两地的距离是多少?(出示红字“两家相距多少米”)
师:有一天, 张华放学回家,正准备做作业 ,发现不小心将同桌李诚的作业 本带回了家,她赶紧打电话给李诚,两人在电话里商量了一会儿,如果步行的话,有几种办法可以让张华把作业 还给李诚?现在请同学们帮他们想一想办法?看哪组的同学办法最多?
(以四人小组讨论的形式)
师:好,哪组的同学想出来的,派一名代表起来回答。
(学生一般会有三种想法:一是让张华带给李诚。二是李诚自己去取,三是两人同时从家里出发,在路上相遇。)
师:这些都是同学们为他们想出的办法,大家想一想,第一次和第二次有几个人在运动?而第三次呢?
2,请两位同学上台表演
①,设问:两个人,两个物体运动时,速度,时间,路程之间又有什么关系呢 (这堂课我们就来学习这类问题中的有关知识.)
②揭示课题:[板书:相遇问题]
二,指导观察,学习新知.
(―),教学准备题
1,示题:张华距李诚家390米,两人同时从家里出发,向对方走去,张华每分钟走60米,李诚每分钟走70米.
2,读题,提出思考问题:几个人运动?运动的方式和结果怎样?、带着观察动画演示.
3,动画演示,指导观察,帮助理解概念:
A,电脑动画显示第一次(全过程).
交待线段的长表示两家间的路程,线段的两端表示两家的住地.画面为:张华走过的路用红色线段表示,李城走过的路用蓝色线段表示.
B,电脑动画显示第二次(全过程).
(1),两个人出发的时间,地点,运动的方向,最后的结果是怎样?带着问题让学生再次仔细观察动画显示.
(2),认识概念:同时,两地,相对,相遇.
师:这是几人在运动 [板书:两个人]
师:两人出发的时间相同吗 [板书:同时]
师:他们运动的方向又是怎样 [板书:相对]
师:最后结果是怎样的. [板书:相遇]
4,填写表格,通过电脑动画显示,师生共同研究两人行走的路程与时间的变化情况,把数据填写在表格里,并找出其中的规律.
(1),电脑动画显示,教师按动鼠标,屏幕显示两人同时出发,相向而行1分钟.
师:(1)两人一分钟所走路程各是多少 路程和是多少
(60+70=130米)两人还相距多少米 (390―130=260米)(板书)
(2),用同样的方法电脑继续显示,两人继续同时出发再走一分钟填写表格后
指导学生观察体会:当随着时间的增加,两人所走路程和也增加.而两人间的距离反而减少.
(3),用同样的方法电脑继续显示:两人同时出发,再走一分钟,也就是两人共同走了3分钟.
教师指着屏幕上的线段图和表格提问:张华和李城3分钟走的路程分别是多少 (180米,210米)他们走的路程和是多少 (180+210=390米)行了三分钟,两人距离是0,这说明什么
引导学生懂得:两人同时出发3分钟,两人之间的距离为0时,也就是两人走到同一个地点,表示他们相遇了.(教师按动鼠标,在两人相遇点上发出响声三下,电脑显示器随之出现相遇两字)
教师按动鼠标,鼠标指着390米字眼,线段全长闪砾三下并发出声响
.提问学生:两人相遇时两人所走路程的和与两家的距离有什么关系
师:完成上面这道题,写在自己的练习本上。(要求同学们上课时将练习本准备在桌角。)
(二),教学例五.
l,自学例题
①,示题:小强和小丽同时从自己家里走向学校.小强每分走65米,小丽每分走70米,经过4分,两人在校门口相遇. 他们两家相距多少米 ?
师:全班齐读。
(2)读题
找出的条件和所求问题,两人是如何运动的?找关键词语.
师:这道题给我们的条件有哪些?
思考:两家的距离跟两人所走的路程有什么关系?可以用关系式表示吗
2,指导观察动画显示.
(1)第一次动画显示.
教师只需显示电脑动画,让学生说出两个人运动的时间, 出发的地点,运动的方向和结果.
(2)第二次动画显示.
教师提问:求两家相距多少米就是求什么 请学生再次认真观察动画软件显示,分小组讨论问题.(看哪组的做法最多。)
板书:两人所走的路程和=两家的距离
3,尝试列式计算,并分组讨论列式根据.
4,检查学生列式情况,要求说出两种列式根据.
教师把一名学生的答案用实物投影仪投影到大屏幕上,并让他说出列式根据.学生先回答,教师再用电脑动画显示加以证实.
5,教师演示动画,证实学生的算法.
第一种算法:
师:65x4求出什么 (电脑动画显示:小强所走的.红色线段闪烁了三下并发出声响)
师:70x4求出什么 (电脑动画显示:小丽所走的篮色线段闪烁了三下并发出声响)
师:为什么把64x4和70x4加起来 (小强和小丽两人共走的整段线段闪烁了三下并发出声响)
第二种算法:
师:65+70求出什么 (动画显示把小强和小丽第一分钟走的那段闪烁,并移动到下面)
师:65+70的和为什么乘以4? (动画显示小强和小丽共走了4分钟,每分钟都走了(65米+70米)就有了4个(65米+70米)
65+70
6,两种算法对比.
(1),在数学知识上有什么联系
(2),解答思路上有什么区别
引导学生得出:两种解法思路上不同,结果相同,而两种
算法的算式之间的联系,正好符合乘法分配律.
三、练习巩固,加深理解
这些都是同学们自己探索出来的,现在我们来看看大家掌握了没?
1. 志明和小龙同时从两地对面走来(如图),经过5分两人相迟,两地相距多少米 (用两种方法解答.)
(做一做,只列式不计算)
简略说说做法。
四 拓展练习:(用多种方法解答)
师:我们知道在日常生活中这样时间一样的相遇问题不多,一般是一个先走了一段时间后,另一个才开始走,我们来看看遇到这种问题,该怎么解决呢?
( 屏幕出示 )
甲,乙两列火车从两地相对行驶.甲车每小时行75千米, 乙车每小时行69千米.甲车开出后1小时,乙车才开出,再过2小时两车相遇.两地间的铁路长多少千米 ?(要求同学画线段图)
找出的条件和所求问题,两人是如何运动的?找关键词语
师:这道题给我们的条件有哪些?(板书)
师:求两地间的铁路长也就是求什么?(同桌讨论)
师:(指名)说说你是怎么做的?(将该同学的作业 放出来。
并提问学生,请他说出为什么这样画,这样做 讲出算法的思路.
五、谈谈你的收获
师:哪位说说这节课你有哪些收获?
相遇问题的说课稿
《相遇问题》这节课的教学设计,力求改变传统的教学模式,体现以学生发展为本,以培养学生的合作精神、创新精神和实践能力为重点,变单一的知识教学为发展学生的能力,引导学生积极主动的探究知识的形成过程,使自主学习、探索学习、创新学习成为数学学习的主流。
相遇问题是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系,现在从以下几个方面说一说本节课的设计思路:
一、教学目标:
1、通过研究学习,帮学生理解“相遇问题”的意义及特点,学会分析相遇问题的数量关系,会解决相遇求路程的问题。
2、培养学生的自主探究知识的能力和创新实践能力,提高学生的质疑水平。
3、培养学生的应用意识,提高学生学习数学的兴趣和自信心。
4、培养学生团结协作精神。
重点是让学生学会分析相遇问题的数量关系,会解决相遇求路程的问题,提高学生自主探究知识的能力。
二、教学组织形式:
本节课以“小组合作学习”的'形式进行教学。一个小组要最快最好地完成学习任务,小组成员之间必然会团结协作,积极思考。这样培养学生的团结协作精神,同时也利于面向全体,人人都有发言机会,逐步提高学生的合作技巧,小组间的竞争也提高了学生的参与程度。
三、教学过程:
1、从实际出发,初步感知。
“相向、相背”对于学生来说是比较抽象的,所以我从学生最熟悉的生活实际入手,帮学生初步感知。我设计了“怎样知道从你家到学校的路程?”这样一个问题,引起学生参与学习的兴趣。引出用“速度时间=路程”的方法,找出新旧知识的连接点。接着又问“如果找你的好朋友来,你们两个人合作,怎样能较快的走完从家到学校的路,再算出从家到学校的路程?”小组合作想办法,汇报交流时,学生想出了两种方法,借助这两种方法帮学生初步感知“相向、相背”的含义。
2、课件演示,加深理解。
在初步感知的基础上,恰到好处的利用课件演示,将静态的知识动态化,为学生创设良好的学习情境。分别演示两种运动方式,让学生仔细看把看到过程说出来,培养学生的观察能力和口头表达能力,通过小组相互交流,然后全班交流,教师及时点拨,使学生理解两种运动方式,从实物演示中抽象出线段图,由直观到抽象,符合学生的认知规律,在这过程中,尊重了学生主体地位,教师只是组织引导者,通过组织小组交流,培养了学生的发言意识、合作意识。
3、小组编题,自主探索。
这是本节课的中心环节。在充分认识两种运动方式后,问“你想研究那种运动方式”,“认识了这两种运动方式,你想通过这两种运动方式知道什么”,这一环节给学生选择的空间,激活了学生思维。组织学生小组合作选择一种运动方式编一道应用题,并解答。全班交流时,对板演同学的解答过程,我鼓励学生大胆提出疑问,再讨论解决疑问。在不断质疑、解疑的过程中,学生的自主学习能力得以培养,探索求知的欲望得以激发,这样就使课堂上的单向信息交流变为多向信息交流,激发了学生参与学习的兴趣,培养了学生的创新意识。
4、设计练习,培养创新。
练习是课堂教学的重要组成部分,设计练习时,我对教材作了处理,力求形式多样,条件问题开放,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。
本课的练习形式有:只列式不计算、提问题列算式、选择、思考,改变了原来的题海战术,从培养学生的实践应用能力、提高学生的创新能力为出发点。从课堂效果看,学生思维非常活跃。
在练习层次的设计上:只列式不计算是基本练习,使学生对两种运动方式有一个全面的认识;提问题列算式练习,问题开放,学生自由的提出问题再解答,在处理这个练习时,我组织学生以小组为单位,比比看哪个小组提的问题多。(同学们兴趣高涨,积极参与,唯恐落后)对相遇问题有了更深的理解;选择题提高学生灵活思维,运用所学知识解决实际问题的能力;思考题设计时,我考虑到满足不同层次学生的求知欲,因材施教,提高学生的创新能力。
总之,这节课就是让学生在小组合作学习中,自主探索、提出问题、解决问题,不断提高学生的创新精神和实践能力。
小学数学相遇问题复习资料
小学数学相遇问题是研究两个运动的物体,从两个不同的地方,沿同一条路线同时(或者不同时)出发,作相向运动。因此,它有三种基本形式:
第一是已知甲、乙的速度和相遇的时间,求距离;
第二是已知甲、乙的速度和距离,求相遇的时间;
第三是已知距离,相遇时间和甲(或者乙)速度,求乙(或者甲)速度。
例1一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。3.5小时两车相遇。甲、乙两个城市的路程是多少千米?
[解]46×3.5+48×3.5
=161+168
=329(千米)。
或(46+48)×3.5
=94×3.5
=329(千米)。
答:甲、乙两个城市的路程有329千米。
[常见错误]
46×3.5+48
=161+48
=209(千米)。
答:甲、乙两个城市的路程有209千米。
[分析]
这是一道相遇问题的基本题,错解中由于审题不严密,误认为只有客车行了3.5小时,货车行了48千米,两车就相遇了,因而产生了错误。如果首先理解甲、乙两城的路程就是客车与货车所行路程的和,然后分别求各自的速度与行驶的时间,就不会出现错误了。
例2两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。甲、乙两车相遇时,各行了多少千米?
[解]255&pide;(45+40)
=255&pide;85
=3(小时)。
45×3=135(千米)。
40×3=120(千米)。
答:相遇时甲车行了135千米,乙车行了120千米。
[常见错误]
(1)255&pide;(45+40)
=255&pide;85
=3(小时)。
45×3=135(千米)。
答:相遇时各行了135千米。
(2)255&pide;(45+40)
=255&pide;85
=3(小时)。
40×3=120(千米)。
45×3=135(千米)。
答:相遇时甲车行了120千米,乙车行了135千米。
[分析]
解题不完整,答非所问,这是应用题解答经常出现的一种错误,特别是对于粗心大意的.学生来说,更是如此。防止粗心大意的办法是要养成检验的良好习惯。
例3 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?
[解][3300-(82+83)×15]&pide;(82+83)
=[3300-165×15]&pide;165
=[3300-2475]&pide;165
=825&pide;165
=5(分钟)。
答:还要5分钟两人可以相遇。
[常见错误]
(1)(82+83)×15&pide;(82+83)
=165×15&pide;165
=2475&pide;165
=15(分钟)。
答:还要15分钟两人可以相遇。
(2)[3300-(82+85)×15]&pide;82
=[3300-165×15]&pide;82
=[3300-2475]&pide;82
=825&pide;82
≈10.1(分钟)。
答:还要行10.1分钟两人可以相遇。
[分析]
这是一道较复杂的相遇问题,错解(1)没有求出还剩下的路程,错解(2)将剩下的路程由甲一人行走,所以两种解法都错了。防止错误的主要办法是需认真审题,理解题中已经行了多少米,还剩下多少米,剩下的路程由甲、乙两人相对行走,还要多少分钟等等。这样,用剩下的路程除以甲、乙两人的速度和,就得出还要多少分钟两人相遇。
例4 甲、乙两港的航程有480千米,上午10点一艘货船从甲港开往乙港,下午2点一艘客船从乙港开往甲港。客船开出12小时与货船相遇。已知货船每小时行15千米,客船每小时行多少千米?
[解](480-15×4)&pide;12-15
=(480-60)&pide;12-15
=420&pide;12-15
=35-15
=20(千米)。
答:客船每小时行20千米。
[常见错误]
(1)480&pide;12-15
=40-15
=25(千米)。
答:客船每小时行25千米。
(2)(480-15×4)&pide;12
=(480-60)&pide;12
=420&pide;12
=35(千米)。
答:客船每小时行35千米。
[分析]
这道题中的数量关系较为复杂,解题时稍不留意就出错。错解(1)是套用公式,没有注意到“货船先行了4小时客船才开出”这个条件。错解(2)求出的是客、货两船的速度和。解答较复杂的应用题一定要养成认真审题的习惯,行程问题给出线段图将有助于理解题意与选择解法。
精选小学数学《相遇问题》教案设计
一、教材分析:
青岛版小学四年级上册数学第46―48页的“相遇问题”,是在学习简单行程问题基础上继续学习的内容,情节、数量关系比以前学的内容复杂。教学时,要启发学生抓住题目中主要的数量关系,联系学过的知识,解决新问题。在教学中要紧紧地抓住对“速度”、“相遇时间”、“路程”这三个量之间的相依关系的理解。通过可逆性改编、变化题目中情节,进一步培养学生认真分析数量关系的能力;逆向思维的能力;及综合分析应用题的能力。
在教学中还要帮助学生突破对一些概念的理解。如“速度和”、“相向”、“相遇”、“同时”等。可以通过学生生活实际,通过演示,帮助学生理解这些概念。学生对这些概念理解了,有利于进一步理解题目的情节,并掌握数量之间的关系。 在教学中还要充分发挥准备题的作用,运用旧知识迁移,学会新知识。过去学习过一个物体走完一段路的行程问题,相遇问题是在这个基础上发展的,它的特点是由两个物体同走一段路,抓住新旧知识的联系与区别进行教学,有利于学生对“相遇问题”的理解和掌握。
二、设计理念:
本着以“学生的发展为本”的教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。
三、教学目标:
1.学会分析“相遇问题”的数量关系。
2.掌握“相遇问题”应用题解题思路和解答方法,提高解题能力。 3.培养学生积极动脑,刻苦钻研的学习精神。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学关键:
使学生弄清每经过一个单位时间,两物体之间的距离变化。
四、教法学法:
为了更好地突出重点,突破难点,本节课我准备采用如下教法:
复习铺垫法 直观演示法分组讨论法启发讲解法练习巩固法 这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。
在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。
教具准备:计算机及辅助软件
教学过程:
一、展示设疑
1.口答:一架飞机平均每小时飞行600千米,从甲地飞往乙地用了4小时,甲乙两地相距多少千米?
师:谁会用一个数量关系式来回答?能把其它几个关系式也说出来吗?
看来大家对过去的`行程问题学得很不错,为自己鼓鼓掌,也对各位和我们一起学习讨论的老师表示欢迎!
这一道题用几个速度和走完全程?
小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?
(板书:速度和×相遇时间=总路程)
四、拓思创新
1.两个邮递员同时从相距3000米的两地相对而行,骑摩托车的速度是800米/分,骑自行车的速度是200米/分。经过几分钟两个邮递员相遇?
这道题与刚才研究过的有什么不一样吗?
2.甲乙两人同时从相距600米的两地相对而行,5分后相遇.甲每分行70米,乙每分行多少米?
3.甲乙两人同时从相距600米的两地相对而行,5分后相遇.乙每分行50米,甲每分行多少米?
这两道题是怎样求一方速度的呢?
根据 路程÷时间=速度和
速度和一方速度=另一方速度
4.小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?
这道题中的两人相遇了吗?
5.甲乙两人同时从M地相背而行,甲每分行70米,乙每分行50米,5分后他们相距多少米?”
这道题什么发生了变化?你觉得还可以用今天学的方法做吗?
(这是运动的双方方向上发生了变化,可数量关系并没有改变,因此,解题方法完全相同。像这样运动双方某一方面发生变化的譬如时间有先后的变化等等以后我们在研究。)
五、小结:谈谈这节课你又获得了哪些知识?
师:这节课我们研究的都是两个人走路呀、骑车呀这类问题,它还能不能研究其他问题呢?还可能研究哪些问题呢?这些都是值得我们思考的,老师想在下一节课中得到你们的答案。
【教学目标】
1)知识与技能:
A:了解相遇问题的应用题的基本结构,掌握解题方法。
B:了解相遇问题应用题的基本结构。
2) 过程与方法:
经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主学习,利用网络查询信息,筛选信息,加工信息,构建知识的生长点,同时提高学生的有关信息素养。
3)情感态度与价值观:
1)激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。
2)培养学生在生活中提出数学问题的意识。
【学生分析】
相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。
【教学内容分析】
重点:了解相遇问题的应用题的基本结构,掌握角题方法。
难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。
【教学设计思路】
学生通过实践活动,初步获得一些数学活动的经验,了解数学在日常生活中的简单应用,初步学会与他人合作交流,获得积极的数学学习情感。运用数学知识来观察世界、认识世界、了解世界。
设计思想:(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。
【教学策略分析】
(1)利用网络,建构个性化学习的平台。
(2)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。
【教学过程】
一、情境导入,复习旧知
谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。
PPT出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。
根据这个信息,你能提出什么问题吗?
PPT出示:刘老师家距离人民公园有多远?
你会解决吗?
PPT:60×5=300(米)
这60表示什么?5呢?300呢?
通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。
今天我们就在这个关系式的基础上来研究点新问题,好不好?
二、合作探究,构建数学模型
1、初步感知相遇问题
PPT出示例题:小明和李老师同时从家出发相对而行,小明步行每分钟走60米,李老师骑自行车,每分钟骑行140米,5分钟后他俩在人民公园相遇。小明家和李老师家相距多少米?
同学们自己读题。在这个题目中有没有你不太理解的词,将它找出来。你觉得这几个词(同时、相对而行、相遇、相距)是什么意思?
预设:让学生用语言或者肢体动作来解释这几个词的含义。
把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。
【设计意图】
此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。
2、合作演绎相遇问题
现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。
学生活动,教师巡视。
(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?
预设:出现相遇点在中间和相遇点不在中间两种情况。
【设计意图】
通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。
3、理解速度和
老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:
一分钟后他俩分别走了多少?一共走了多少?
两分钟后他俩又走了多少?一共走了多少?
三分钟?四分钟?五分钟呢?
【设计意图】
通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。
4、画线段图
你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?
投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?
学生补充和完善自己的线段图。
师出示课件演示画线段图的过程。
5、自主解决问题
你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。
找2生板书2种方法,点评。
回顾这两种方法,我们是怎么解决相遇问题的?
小结:方法1:路程1+路程2=总路程
方法2:速度和×相遇时间=总路程
6、体会线段图的好处
对比题目文字和线段图,你有什么感觉?
小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。
三、巩固练习,拓展应用
1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)
2、数学
两队分别从两头同时施工,4个月开通。这条隧道长多少米? (只列式不计算)
3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)数学 6制4上 打样_页面_087
刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?
小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。
四、总结
这节课你有什么收获?学会了什么?
1.小学数学的课件
2.小学数学课件
3.小学数学教学课件
4.小学足球课课件
5.小学郎诵春风课件
6.小学美术课件
7.小学科学课件
8.小学英语课件
9.小学生兴趣爱好课件
10.小学生关于搭石课件
小学数学相遇问题练习题
(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?
(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?
(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?
(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?
(5)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?
(6)甲、乙两城相距680千米,从甲城开往乙城的`普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?
(7)甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?
(8)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?
(9)甲、乙两列汽车同时从两地出发,相向而行。已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。求甲乙两地相距多少千米?
(10)姐妹俩同时从家里到少年宫,路程全长770米。妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。这时妹妹走了几分钟?(2001年上海市金山区升级考试卷)
(11)小明和小华从甲、乙两地同时出发,相向而行。小明步行每分钟走60米,小华骑自行车每分钟行190米,几分钟后两人在距中点650米处相遇? (2002年上海市金山区升级考试卷)
(12)A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。各自达到目的地后又立即返回,经过8小时后它们第二此相遇。已知甲车每小时行45去,千米,乙车每小时行多少千米?
★
★
★
★
★
★
★
★
★
★