小学奥数小学奥数知识讲解4

这次小编在这里给大家整理了小学奥数小学奥数知识讲解4,本文共6篇,供大家阅读参考。

小学奥数小学奥数知识讲解4

一般应用题(一)

一、知识要点

一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样,因此,一般应用题没有明显的结构特征和解题规律可循。解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解时,可以根据题中的已知条件,灵活运用这两种方法。

二、精讲精练

【例题1】 五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。原来每班多少人?

【思路导航】从每班选16人参加少先队活动,6个班共选16×6=96(人)。剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。

练习1:

1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少?

2.把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。这堆货物一共有多少箱?

3.老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。这批树苗一共有多少棵?

【例题2】 某车间按计划每天应加工50个零件,实际每天加工56个零件。这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。这个车间实际加工了多少个零件?

【思路导航】如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。为什么会多加工288个呢?是因为每天多加工了56-50=6(个)。因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。

练习2:

1.汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。甲、乙两地相距多少千米?

2.小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。他家离学校有多远?

3.加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?

【例题3】 甲、乙二人加工零件。甲比乙每天多加工6个零件,乙中途停了15天没有加工。40天后,乙所加工的零件个数正好是甲的一半。这时两人各加工了多少个零件?

【思路导航】甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多,

由于甲每天比乙多加工6个,20天一共多加工6×20=120(个)。这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120÷(25-20)=24(个)。乙一共加工了24×25=600(个),甲一共加工了600×2=1200(个)

练习3:

1.甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?

2.甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半。A、B两地相距多少千米?

3.甲、乙两人承包一项工程,共得工资1120元。已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。求甲、乙每天各分得工资多少元?

【例题4】 服装厂要加工一批上衣,原计划20天完成任务。实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。原计划加工上衣多少件?

【思路导航】由于每天比计划多加工60件,15天就比原计划的15天多加工60×15=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(20-15)天中的工作量。所以,原计划每天加工上衣(900-350)÷(20-15)=110(件),原计划加工110×20=2200(件)。

练习4:

1.用汽车运一堆煤,原计划8小时运完。实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。原计划8小时运多少吨煤?

2.汽车从甲地开往乙地,原计划10小时到达。实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千米。甲、乙两地相距多少千米?

3.小明看一本书,原计划8天看完。实际每天比原计划少看了4页。这样,用10天才看完了这本书。这本书一共有多少页?

【例题5】 王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5在完成任务。王师傅一共做了多少个零件?

【思路导航】按实际做法再做5天,就会超产(60+20)×5=400(个)。为什么会超产400个呢?是因为每天多生产了20个,400里面有几个20,就是原计划生产几天。400÷20=20(天),因此,王师傅一共做了60×20=1200(个)零件。

练习5:

1.食堂准备了一批煤,原计划每天烧0.8吨,实际每天比原计划节约了0.1吨,这样比原计划多烧了2天。这批煤一共有多少吨?

2.造纸厂生产一批纸,计划每天生产13.5吨,实际每天比原计划多生产1.5吨,结果提前2.5天完成了任务。实际用了多少天?

3.机床厂生产一批机床,原计划每天生产15台,实际每天生产18台,这样比原计划提前3天完成了任务。这批机床一共有多少台?

第3讲  尾数和余数

一、知识要点

自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数,尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。

二、精讲精练

【例题1】 写出除213后余3的全部两位数。

【思路导航】因为213=210+3.把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数。

练习1:

1.写出除109后余4的全部两位数。

2.178除以一个两位数后余数是3.适合条件的两位数有哪些?

3.写出除1290后余3的全部三位数。

【例题2】 (1)125×125×125×……×125[100个25]积的尾数是几?

(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?

【思路导航】(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;

(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。

练习2:

1.21×21×21×……×21[50个21]积的尾数是几?

2.1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?

3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?

【例题3】 (1)4×4×4×…×4[50个4]积的个位数是几?

(2)9×9×9×…×9[51个9]积的个位数是几?

【思路导航】(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。50÷2=25没有余数,说明50个4相乘,积的个位是6,

(2)用上面的方法可以发现,51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1.余数是1.说明51个9本乘积的个位是9。

练习3:

1.24×24×24×…×24[个24],积的尾数是多少?

2.1×2×3×…×98×99,积的尾数是多少?

3.94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?

【例题4】 把1/7化成小数,那么小数点后面第100位上的数字是多少?

【思路导航】因为1/7≈0.142857142857……,化成的小数是一个无限循环小数,循环节“142857”共有6个数字。由于100÷6=16……4,所以,小数点后面的第100位是第17个循环节的第4个数字,是8。

练习4:

1.把1/11化成小数,求小数点后面第2001位上的数字。

2.5/7写成循环小数后,小数点后第50个数字是几?

3.有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和。在这串数中,第1000个数被3除后所得的余数是多少?

【例题5】 555…55[2001个5]÷13.当商是整数时,余数是几?

【思路导航】如果用除法硬除显然太麻烦,我们可以先用竖式来除一除,看一看余数在按怎样的规律变化。

从竖式中可以看出,余数是按3、9、4、6、0、5这六个数字不断重复出现。2001÷6=333……3.所以,当商是整数时,余数是4。

练习5:

1.444…4÷6[100个4],当商是整数时,余数是几?

2.当商是整数时,余数各是几?

(1)666…6÷4[100个6]

(2)444…4÷74[200个4]

(3)888…8÷7[200个8]

(4)111…1÷7[50个1]

一般应用题(二)

一、知识要点

较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢,因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。

二、精讲精练

【例题1】 工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?

【思路导航】因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(35-25)根短管子的长度。因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。

练习1:

1.生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时。如果甲每小时比乙多生产10个零件,这批零件一共有多少个?

2.一班的小朋友在操场上做游戏,每组6人。玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。参加游戏的小朋友一共有多少人?

3.甲、乙二人同时从A地到B地,甲经过10小时到达了B地,比乙多用了4小时。已知二人的速度差是每小时5千米,求甲、乙二人每小时各行多少千米?

【例题2】 甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。结帐时,甲和乙都要付给丙24元,每千克苹果多少元?

【思路导航】三人拿同样多的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48元。每千克苹果是48÷16=3(元)。

练习2:

1.甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6角钱。每支铅笔多少钱?

2.春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平均分了这些面包,而小红分别给了小明和小军各2.2元钱。每个面包多少元?

3.“六一”儿童节时同学们做纸花,小华买来了7张红纸,小英买来了和红纸同样价格的5张黄纸。老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师9元钱。老师把9元钱怎样分给小华和小英?

【例题3】 甲城有177吨货物要跑一趟运到乙城。大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。用多少辆大卡车和小卡车来运输时耗油最少?

【思路导航】大汽车一次运5吨,耗油10升,平均运1吨货耗油10÷5=2(升);小汽车一次运2吨,耗油5升,平均运1吨货耗油5÷2=2.5(升),

显然,为耗油量最少应该尽可能用大卡车。177÷5=35(辆)……2吨,余下的2吨正好用小卡车运。因此,用35辆大汽车和1辆小汽车运耗油量最少。

练习3:

1.五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且都是整数。如果最高分是90分,那么得分最少的选手至少得多少分?

2.用1元钱买4分、8分、1角的邮票共15张,那么最多可以买1角的邮票多少张?

3.某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。可以肯定至少有多少人四项都会?

【例题4】 有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份。那么订江海晚报和电视报的共有多少家?

【思路导航】这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43家。在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。

练习4:

1.五(1)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了三种水果,其中苹果40个,梨32个,桔子26个。那么,带梨和桔子的有多少个同学?

2.在一次庆祝“六一”儿童节活动中,一个方队的同学每人手里都拿两种颜色的气球,共有红、黄、绿三种颜色。其中红色有56只,黄色的有60只,绿色的有46只。那么,手拿红、绿两种气球的有多少个同学?

3.学校开设了音乐、球类和美术三个兴趣小组,第一小队的同学们每人都参加了其中的两个小组,其中9人参加球类小组,6人参加美术小组,7人参加音乐小组的活动。参加美术和音乐小组活动的有多少个同学?

【例题5】 一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已进水800桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完。每分钟进水多少桶?

【思路导航】50分钟内,两台抽水机一共能抽水(18+14)×50=1600(桶)。1600桶水中,有800桶是开始抽之前就漏进的,另800桶是50分钟又漏进的,因此,每分钟漏进水800÷50=16(桶)。

练习5:

1.一个水池能装8吨水,水池里装有一个进水管和一个出水管。两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?

2.某工地原有水泥120吨。因工程需要,又派5辆卡车往工地送水泥,平均每辆卡车每天送25吨,3天后工地上共有水泥101吨。这个工地平均每天用水泥多少吨?

3.一堆货物重96吨,甲队用16小时运完,乙队用24小时运完。如果让两队同时合运,几小时运完?

第2讲  平均数(2)

二、精讲精练

【例题1】 小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分,问这是他第几次测验?

【思路导航】100分比86分多14分,这14分必须填补到前几次的平均分84分中去,使其平均分成为86分。每次填补86-84=2(分),14里面有7个2.所以,前面已经测验了7次,这是第8次测验。

练习1:

1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?

2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?

3.两组同学进行跳绳比赛,平均每人跳152次。甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?

【例题2】 小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,英语比语文多10分。小亮的各科成绩是多少分?

【思路导航】因为语文、英语两科平均分84分,即语文+英语=168分,而英语比语文多10分,即英语-语文=10分,所以,语文是(168-10)÷2=79分,英语是79+10=89分。又因为政治、英语两科平均86分,所以政治是86×2-89=83分;而政治、数学两科平均分91.5分,数学是91.5×2-83=100分;最后根据五科的平均成绩是89分可知,自然分是89×5-(79+89+83+100)=94分。

练习2:

1.甲、乙、丙三个数的平均数是82.甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?

2.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?

3.五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?

【例题3】 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?

【思路导航】用往返的路程除以往返所用的时间就等于往返两地的平均速度。显然,要求往返的平均速度必须先求出逆水行全程时所用的时间。因为360÷10=36(千米)是顺水速度,它是汽艇的静水速度与水流速度的和,所以,此汽艇的静水速度是36-6=30(千米),

而逆水速度=静水速度-水流速度,所以汽艇的逆水速度是30-6=24(千米)。逆水行全程时所用时间是360÷24=15(小时),往返的平均速度是360×2÷(10+15)=28.8(千米)。

练习3:

1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头?

2.一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?

3.甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?

【例题4】 幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?

【思路导航】只要知道了大、小班小朋友分得的平均数,再乘(30+20)人就能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多2×30=60(块),这60块平均分给20个小班的小朋友,每人可得60÷20=3(块)。因此,大、小班小朋友分得平均块数是10+3=13(块)。一共分掉13×(30+20)=650(块)。

练习4:

1.数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分比全组的平均分高2分,全组的平均分是多少分?

2.两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?

3.一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元。问这位技术工得多少元?

【例题5】 王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米。剩下的步行,每小时走4千米。王强行完全程的平均速度是每小时多少千米?

【思路导航】求行完全程的平均速度,应该用全程除以行全程所用的时间。由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米。

练习5:

1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。

2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。

3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?

一般应用题(三)

一、知识要点

解答一般应用题时,可以按下面的步骤进行:

1.弄清题意,找出已知条件和所求问题;

2.分析已知条件和所求问题之间的关系,找出解题的途径;

3.拟定解答计划,列出算式,算出得数;

4,检验解答方法是否合理,结果是否正确,最后写出答案,

二、精讲精练

【例题1】 甲、乙两工人生产同样的零件,原计划每天共生产700个。由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。甲、乙原计划每天各生产多少个零件?

【思路导航】二人实际每天比原计划多生产1020-700=320(个)。这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700-220=480(个)。

练习1:

1.工厂里有2个锅炉,原来每月烧煤5.6吨。进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。原来两个锅炉每月各烧煤多少吨?

2.甲、乙两人生产同样的零件,原计划每天共生产80个。由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。甲、乙原计划每天各生产多少个零件?

3.甲、乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖了150米。求两队原计划每天各挖多少米?

【例题2】 把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。求竹竿的长。

【思路导航】因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是40×2=80(厘米)。这时,湿的部分比它的一半长13厘米,说明竹竿的长度是(80-13)×2=134(厘米)。

练习2:

1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。这根铁丝原来长多少厘米?

2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。这根竹竿原来长多少厘米?

3.两根电线一样长,第一根剪去80米,第二根剪去320米,剩下部分第一根是第二根长度的4倍。两根电线原来各长多少米?

【例题3】 将一根电线截成15段,

一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?

【思路导航】设这15段中有X段是8米长的,则有(15-X)段是5米长的。然后根据“8米的总长度比5米的总长度多3米”列出方程,并进行解答。

练习3:

1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。上坡路比下坡路少220米。这段小坡路全长多少米?

2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?

3.老师买回两种笔共16支奖给三好学生,其中铅笔每支0.4元,圆珠笔每支1.2元,买圆珠笔比买铅笔共多用了1.6元。求买这些笔共用去多少钱?

【例题4】 甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。又同时加工4小时后,甲总共加工的零件反而比乙多4200个。甲、乙每小时各加工零件多少个?

【思路导航】(1)在后4小时内,甲一共比乙多加工了4200+400=4600(个)零件,甲每小时比乙多加工4600÷4=1150个零件。

(2)在前4小时内,甲实际只加工了4-2.5=1.5小时,甲1.5小时比乙1.5小时应多做1150×1.5=1725个零件,因此,1725+400=2125个零件就是乙2.5小时的工作量,即乙每小时加工2125÷2.5=850个,甲每小时加工850+1150=个。

练习4:

1.甲、乙二人同时从A地去B地,前3小时,甲因修车1小时,因此乙邻先于甲4千米。又经过3小时,甲反而领先了乙17千米。求二人的速度。

2.师徒二人生产同一种零件,徒弟比师傅早2小时开工,当师傅生产了2小时后,发现自己比徒弟少做20个零件。二人又生产了2小时,师傅反而比徒弟多生产了10个。师傅每小时生产多少个零件?

3.甲每小时生产12个零件,乙每小时生产8个零件。一次,二人同时生产同样多的零件,结果甲比乙提前5小时完成了任务。问:甲一共生产了多少个零件?

【例题5】 加工一批零件,单给甲加工需10小时,单给乙加工需8小时。已知甲每小时比乙少做3个零件,这批零件一共有多少个?

【思路导航】因为甲每小时比乙少做3个零件,8小时就比乙少做3×8=24(个)零件,所以,24个零件就是甲(10-8)小时的工作量。甲每小时加工24÷(10-8)=12(个),这批零件一共有12×10=120(个)。

练习5:

1.快、慢两车同时从甲地开往乙地,行完全程快车只用了4小时,而慢车用了6.5小时。已知快车每小时比慢车多行25千米。甲、乙两地相距多少千米?

2.妈妈去买水果,她所带的钱正好能买18千克苹果或25千克的梨。已知每千克梨比每千克苹果便宜0.7元,妈妈一共带了多少钱?

3.师徒二人加工零件,已知师傅6小时加工的零件和徒弟8小时加工的零件相等。如果师傅每小时比徒弟多加工3个零件,那么,徒弟每小时加工多少个零件?

一般应用题(二)

一、知识要点

较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢,因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。

二、精讲精练

【例题1】 工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?

【思路导航】因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(35-25)根短管子的长度。因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。

练习1:

1.生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时。如果甲每小时比乙多生产10个零件,这批零件一共有多少个?

2.一班的小朋友在操场上做游戏,每组6人。玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。参加游戏的小朋友一共有多少人?

3.甲、乙二人同时从A地到B地,甲经过10小时到达了B地,比乙多用了4小时。已知二人的速度差是每小时5千米,求甲、乙二人每小时各行多少千米?

【例题2】 甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。结帐时,甲和乙都要付给丙24元,每千克苹果多少元?

【思路导航】三人拿同样多的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48元。每千克苹果是48÷16=3(元)。

练习2:

1.甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6角钱。每支铅笔多少钱?

2.春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平均分了这些面包,而小红分别给了小明和小军各2.2元钱。每个面包多少元?

3.“六一”儿童节时同学们做纸花,小华买来了7张红纸,小英买来了和红纸同样价格的5张黄纸。老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师9元钱。老师把9元钱怎样分给小华和小英?

【例题3】 甲城有177吨货物要跑一趟运到乙城。大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。用多少辆大卡车和小卡车来运输时耗油最少?

【思路导航】大汽车一次运5吨,耗油10升,平均运1吨货耗油10÷5=2(升);小汽车一次运2吨,耗油5升,平均运1吨货耗油5÷2=2.5(升),

显然,为耗油量最少应该尽可能用大卡车。177÷5=35(辆)……2吨,余下的2吨正好用小卡车运。因此,用35辆大汽车和1辆小汽车运耗油量最少。

练习3:

1.五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且都是整数。如果最高分是90分,那么得分最少的选手至少得多少分?

2.用1元钱买4分、8分、1角的邮票共15张,那么最多可以买1角的邮票多少张?

3.某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。可以肯定至少有多少人四项都会?

【例题4】 有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份。那么订江海晚报和电视报的共有多少家?

【思路导航】这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43家。在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。

练习4:

1.五(1)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了三种水果,其中苹果40个,梨32个,桔子26个。那么,带梨和桔子的有多少个同学?

2.在一次庆祝“六一”儿童节活动中,一个方队的同学每人手里都拿两种颜色的气球,共有红、黄、绿三种颜色。其中红色有56只,黄色的有60只,绿色的有46只。那么,手拿红、绿两种气球的有多少个同学?

3.学校开设了音乐、球类和美术三个兴趣小组,第一小队的同学们每人都参加了其中的两个小组,其中9人参加球类小组,6人参加美术小组,7人参加音乐小组的活动。参加美术和音乐小组活动的有多少个同学?

【例题5】 一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已进水800桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完。每分钟进水多少桶?

【思路导航】50分钟内,两台抽水机一共能抽水(18+14)×50=1600(桶)。1600桶水中,有800桶是开始抽之前就漏进的,另800桶是50分钟又漏进的,因此,每分钟漏进水800÷50=16(桶)。

练习5:

1.一个水池能装8吨水,水池里装有一个进水管和一个出水管。两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?

2.某工地原有水泥120吨。因工程需要,又派5辆卡车往工地送水泥,平均每辆卡车每天送25吨,3天后工地上共有水泥101吨。这个工地平均每天用水泥多少吨?

3.一堆货物重96吨,甲队用16小时运完,乙队用24小时运完。如果让两队同时合运,几小时运完?