有理数减法数学七年级上册教案
- 文档
- 2024-06-04
- 107热度
- 0评论
下面是小编整理的有理数减法数学七年级上册教案,本文共15篇,欢迎您阅读,希望对您有所帮助。
有理数减法人教版数学七年级上册教案
教学目标
1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)
2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.
教学过程
一、情境导入
北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是20xx年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?
《1.3.2有理数的减法》同步练习含答案
1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是
A.-6-7+2-9B.-6-7-2+9
C.-6+7-2-9D.-6+7-2+9
2.式子-20+3-5+7的正确读法是()
A.负20加3减5加7的和
B.负20加3减负5加正7
C.负20加3减5加7D.负20加正3减负5加正7
3.下列交换加数位置的.变形中,正确的是()
A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3
C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-1
4.某地冬季一天中午的气温是5℃,下午上升到7℃,受冷空气影响,到夜间气温最低时又下降了9℃,则这天夜间的最低气温是________℃.
1.3.2有理数的减法》同步练习题(含答案)
一、选择题
1.下列等式计算正确的是( )
A.(-2)+3=-1B.3-(-2)=1
C.(-3)+(-2)=6D.(-3)+(-2)=-5
答案D(-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;
(-3)+(-2)=-5,故选项C错误,选项D正确,故选D.
2.-3,-14,7的和比它们的绝对值的和小( )
A.-34B.-10C.10D.34
答案D可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.
教学目标
【知识与能力目标】
掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。
【过程与方法目标】
体验分类是数学上的常用处理问题的方法。
【情感态度价值观目标】
要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精 神,撰写小论文进一步了解数的发展历史。
教学重难点
【教学重点】
正确理解有理数的概念。
【教学难点】
正确理解分类的标准和按照一定的标准进行分类。
课前准备
复习正负数,尝试将之前学过的数进行合理的分类。
教学过程
探索新知
之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如:
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,。··…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)
练一练
1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2、教科书第8页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
小结与作业
课堂小结
请同学们回顾本节课所学知识,回答下列问题:
1、有理数是怎样定义的?
2、有理数有几种分类方法?具体是怎样分类的?
3、有理数的学习过程中,应注意什么?
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
作业
教科书第14页习题1.2第1题
板书设计
一、知识与能力
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备
用电脑制作动画体现有理数的分类过程。
教学过程
四、课堂引入
1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?
2.举例说明现实中具有相反意义的量。
3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。
有理数的减法北师大版数学初一上册教案
〖教学目的〗
〖知识与技能目标:〗理解有理数减法的意义。
〖过程与方法:〗会进行有理数减法运算
〖情感态度与价值观:〗
有意识培养学生学习数学的信心和克服困难的'勇气,从中体味成功的快乐.
〖教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。
〖教学方法:〗引导发现法
〖教具准备:〗尺、小黑板。
〖教学过程:〗
Ⅰ.复习提问:
1.叙述有理数加法法则。
2.两个有理数的和一定大于每一个加数吗?
3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?
4.3-10有意义吗?它应当等于多少?
注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。
Ⅱ.新课讲解:
1.由问2、问3讲解有理数减法的意义。
在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。
由实际运算的例子归纳有理微减法法则。
考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,
(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。
等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。
3.讲解例题:
(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?
解:∵15-5=10,∴15℃比5℃高10℃;
∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;
∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃
比15℃低20℃。
(2)教科书例1、例2。
Ⅲ.做一做
课堂练习:教科书第82页练习第1~3题。
Ⅳ.课时小结
有理数减法的意义。
Ⅴ.课后作业
1.习题2.6A组第1~9题,B组选做。
《2.5有理数的减法》同步练习
2.(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“_”表示的数应该是.
3.(考点一)计算:(1)-2- (+10);
(2)0-(-3.6);
(3)(-30)-(-6)-(+6)-(-15);
《2.5有理数的减法》测试
16.下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.
姓名小明小丁小丽小文小天小乐
体重与标准体重的差(kg)-5+3-7+4+60
(1)谁最重?谁最轻?
(2)最重的比最轻的重多少千克?
七年级数学上册有理数的减法测试题和答案
1.冬季的某一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差(C)
A.4℃B.6℃
C.10℃D.16℃
2.一个数是10,另一个数比10的相反数小2,则这两个数的和为(B)
A.-18B.-2
C.18D.2
3.与(-b)-(-a)相等的式子是(B)
A.(+b)-(-a)B.(-b)+a
C.(-b)+(-a)D.(-b)-(+a)
4.下列说法中,正确的是(C)
A.0减去一个数,仍得这个数
B.两个相反数相减得0
C.若减数比被减数大,则差为负数
D.两个负数相减,差为负数
5.比-3小10的数是__-13__,-7比-17大10,-2比-7大__5__,5℃比-2℃高__7__℃.
6.上海的东方明珠电视塔高468m,上海某段地铁高度为-15m,则电视塔比此段地铁高__483__m.
7.计算下列各题:
(1)-13-+23;
(2)|-7.5|--12;
(3)-12--113;
(4)-112++114+-212-+114.
【解】 (1)原式=-13+-23=-1.
(2)原式=7.5-12=7.
(3)原式=-12++113=56.
(4)原式=-112+-212++114
+-114=-4.
8.若a-1的相反数是2,b的绝对值是3,求a-b的值.
【解】 ∵a-1的相反数是2,∴a-1=-2,∴a=-1.
∵b的'绝对值是3,∴|b|=3,∴b=±3.
当b=3时,a-b=-1-3=-4;
当b=-3时,a-b=-1-(-3)=2.
9.的某一天,哈尔滨等5个城市的最高气温与最低气温记录如下表(单位:℃),哪个城市的温差最大?哪个城市的温差最小?
城市名称哈尔滨长春沈阳北京大连
最高温度(℃)233106
最低温度(℃)-12-10-82-3
【解】 五个城市的温差分别如下:哈尔滨:2-(-12)=2+(+12)=14(℃);长春:3-(-10)=3+(+10)=13(℃);沈阳:3-(-8)=3+(+8)=11(℃);北京:10-2=8(℃);大连:6-(-3)=6+(+3)=9(℃).故哈尔滨的温差最大,北京的温差最小.
10.计算:5-[(-5)-17]=__27__.
【解】 5-[(-5)-17]=5-[-(5+17)]=5-(-22)=5+22=27.
11.已知a是7的相反数,b比a的相反数大3,则b比a大多少?
【解】 由题意,得a=-7,b=7+3=10.
∴b-a=10-(-7)=10+(+7)=17,故b比a大17.
12.列式计算;
(1)求-12的绝对值的相反数与312的差;
【解】 --12-312
=-12-312=-12+312=-4.
(2)求-23的绝对值的相反数与614的相反数的差.
【解】 --23--614
=-23+614
=614-23
=6312-812=5712.
13.三个数-10,-2,+4的和比它们的绝对值的和小多少?
【解】 (|-10|+|-2|+|+4|)-[(-10)+(-2)+(+4)]=(10+2+4)-[-(10+2)+4]
=16-(-12+4)
=16-(-8)
=16+8
=24.
七年级数学上册《有理数的减法》教学反思
课堂上设计了五个教学环节。
1、创设情境,激情引趣。
2、合作探究,发现新知。
3、巩固应用,体验成功。
4、开放训练,拓展思维。
5、小结反思,布置作业。
利用学生熟悉的动画片导入,创设情境,集中学生思维的兴奋点,激发学习动机。探讨有理数减法法则时,学生经历了利用旧知计算温差,对比观察,发现、总结、验证规律的'过程。从而发展学生探究意识,合作意识。培养学生归纳概括能力和语言表达能力,使学生进一步熟悉有理数减法法则。趣味数学题的设计,培养多向性思维,发散性思维。学生参与设计热情十分高涨,较好的培养学生创新能力和实践能力。使他们感受到数学知识来源于实际,利用数学知识又服务于生活。反思小结,浓缩知识要点,达到三维教学目标的融合。
通过本节课,使我深深感悟到实施新课标,必须充分体现以学生为主体。从学生活动来看,动脑、动手、动口,多种感官参与学习;从形式看,学生口答,笔答,抢答,板演,同桌交流,小组讨论,好朋友间探究等形式多种多样,气氛活跃,积极性高。比较充分的体现课堂是学生的学习天地。
七年级数学上册有理数及其运算复习教案
一、有理数的意义
1.有理数的分类
知识点:大于零的数叫正数,在正数前面加上“”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+,+5.2;零既不是正数,也不是负数。
2.数轴
知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数
3.相反数
知识点:只有符号不同的'两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4.绝对值
知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作OaO;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则OaO=a.若a=0,则OaO=0.若a
二、有理数的运算
1.有理数的加法
知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)
多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
2.有理数的减法
知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。
3.有理数的加减混合运算
知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。
4.有理数的乘法
知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。
乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5.有理数的除法
知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。
除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。
注意:倒数与相反数的区别
6.有理数的乘方
知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。
乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。
7.有理数的混合运算
知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。
技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。
北师大版七年级数学上册教案-第二章-有理数及其运算
教学目的和要求:
1.使学生了解有理数加法的意义。
2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。
3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)
教学重点和难点:
重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。
难点:理解有理数加法法则,尤其是异号两数相加的情形。
教学工具和方法:
工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)
教学过程:
一、复习引入:
1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?
2.问题:[
一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?
我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)
[来源:学#科#网]
二、讲授新课:
1.发现、总结(分类):
我们必须把问题说得明确些,并规定向东为正,向西为负。
(同号两数相加法则)
(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,
即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:
(2)若两次都是向西走,则他现在位于原来位置的西方50米处,
写成算式就是: (―20)+(―30)=―50。
(师生共同归纳同号两数相加法则:[来源:Z+··+k.Com]
同号两数相加,取相同的符号,并把绝对值相加)
(异号两数相加法则)
(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:
写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。
(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。
后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):
你能发现和与两个加数的符号和绝对值之间有什么关系吗?
(+4)+(―3)=( ); (+3)+(―10)=( );
(―5)+(+7)=( ); (―6)+ 2 = ( )。
再看两种特殊情形:
(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。
(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。
(师生共同归纳异号两数相加法则:
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)
(互为相反数的两数相加为零
问题:会不会出现和为0的情况?
(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)= ( )。
师生共同归纳法则3:互为相反数的两数相加得0)
问题:你能有法则来解释法则3吗?
学生回答:可以用异号两数相加的法则)
((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0= ( )。我们不难得出它们的结果。
一般地,一个数同0相加,仍得这个数)
2.概括:
综合以上情形,我们得到有理数的加法法则:
(1) 同号两数相加,取相同的符号,并把绝对值相加;
(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3) 互为相反数的两个数相加得0;
(4)一个数同0相加,仍得这个数.
注意:
一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。
3.例题:
例:计算:
(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。
解:(1)解原式=―(11―2)=―9;
(2)解原式=+(20+12)=+32=32;
(3)解原式=;
(4)解原式= +(4.3―3.4)=0.9。
4.五分钟测试:
计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。
三、课堂小结:
这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.
应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。
(运算的关键:先分类,在按法则运算
运算步骤:先确定符号,再计算绝对值
注意问题:要借助数轴来进一步验证有理数的加法法则)
四、课堂作业:
课本:P18:1,2,3。
板书设计:
教学后记:
略
1.熟练地进行有理数加减混合运算,并利用运算律简化运算;
2. 培养学生的运算能力。
加减运算法则和加法运算律。
省略加号与括号的计算。
电脑、投影仪
一、从学生原有认知结构提出问题
说出-6+9-8-7+3两种读法.
二、解决问题
1.计算:(1)-12+11-8+39; (2)+45-9-91+5;
(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;
2.用较简便方法计算:
-16+25+16-15+4-10.
三、应用、拓展
例1.计算:2/3-1/8-(-1/3)+(-3/8)
练一练:1.P46第1题(1)-(4)题;P46问题解决
例2.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;
(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;
(9)(a-c)-(b-d); (10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
练一练:1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.
2.分别根据下列条件求代数式·-y-z+w的值:
(1)·=-3,y=-2,z=0,w=5;
(2)·=0.3,y=-0.7,z=1.1,w=-2.1;
七年级数学上册《有理数的混合运算》教案
教学目标
1.进一步掌握有理数的运算法则和运算律;
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力.
教学重点和难点
重点:有理数的混合运算.
难点:准确地掌握有理数的运算顺序和运算中的符号问题.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(五分钟练习):
(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;
(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;
(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;
(24)3.4×104÷(-5).
2.说一说我们学过的.有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.
审题:(1)运算顺序如何?
(2)符号如何?
说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.
本节课我所讲的是人教版七年级上册第一章《有理数》中的第三节第二课《有理数的减法》的第一课时。
一、说课标:
数与代数部分是义务教育阶段数学课程的重要内容。这部分内容包括数的概念、数的运算、数的估计;字母表数、代数式及其运算;方程、方程组、不等式,函数等。而数的运算伴随着数的形成与发展不断丰富,从最基本的自然数的四则运算,扩展到有理数的四则运算、乘方、开方运算等。新课标中指出:运算能力主要是根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。新课标是在总目标的四个方面之一的“数学思考”中提出运算能力的思维和抽象思维。”这说明运算能力是数学思考的重要内涵。不仅如此,运算能力对新课标在总目标中提出的其他三个方面目标的整体实现,同样是不可缺少的基本条件。
二、说教材的地位和作用:
“有理数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。有理数的减法是小学减法的延续,通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,它对今后正确熟练地进行有理数的混合运算奠定基础,并对解决实际问题都有十分重要的作用。
三、说学情:
在生活中,学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面。在小学阶段学生学习了局限性的减法运算,并进行了技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。
因此,在教学中一方面要利用这些既有的知识储备作为“知识生长的最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强,因此在教学过程中要做好调控和引导,并且要让学生体验到成功的.快乐。
四、说教学目标:
依据《课程标准》的要求,结合本班学生情况,确定本节课的教学目标如下:
知识与技能目标:掌握有理数的减法法则,能运用有理数的减法法则进行运算。
过程与方法目标:经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过对有理数减法法则的探讨,体验数学的转化思想。
情感态度与价值观目标: 在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解有理数减法法则的意义,会运用有理数的减法法则进行运算。难点确定为:有理数减法法则的探讨。
五、说教学方法和学法指导:
《新课标》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导发现法”组织教学。其基本程序设计为:创设情境提出猜想一探索验证一总结归纳一反馈运用,上述教学程序的实施很大程度上依赖于学生的学习,因此对学生学习方式的指导是十分重要的,本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从特例到归纳出一般的减法法则的全过程,体验知识产生和发展的全过程。
六、说教学过程及设计思路:
本节课主要以多媒体课件教学,通过创设情境,层层深入,环环相扣,师生互动,探讨交流,讲练结合设计本节课。
(一)复习回顾
1、-2的相反数是____,+0.3的相反数____,相反数是它的本身的数是___。
2、计算
(1) 4 + 16 = (2)(–2)+(–7)=
(3)(–1)+3。6 = (4) 2 + (–4) =
(5)(–5)+ 5 = (6) 0 + (–8) =
设计意图:通过复习回顾,熟悉旧知,为学生本节课的学习做好知识准备。
(二)创设情境、引入新课
北京某天气温是-3C~3C,这天的温差是多少摄氏度呢?
学生列式表示3-(-3)=?但是不知道结果。
设计意图:通过小知识引入问题,然后引出有理数的减法运算,引起学生的探究欲望,激发学生的学习兴趣。
(三)探究新知
同学们都知道,减法和加法互为逆运算,3-(-3)=?也就是问什么数加上-3等于3?
因为6+(-3)=3 所以 3-(-3)=6
师问:3+?=6 生答:3+ 3=6
请同学们观察以下两个式子:
(1)3 -( –3)=6; (2)3+3=6
你发现了什么?换些数试试。(学生自主思考)
9-8=____, 9+(-8)=____;
15-7=____, 15+(-7)=____。
然后比较上面的式子,能发现其中的规律吗?分小组讨论。
然后师生共同归纳法则,教师板书法则。并强调减法在运算时有 2 个要素要发生变化,1个要素不变。(两变一不变)
设计意图:通过观察、交流、讨论,归纳发现有理数的减法法则,感受转化的数学思想。
练习:下列括号内各应填什么数?
(1)(-2)-(-3)=(-2)+____;
(2) 0 - (-4)= 0 ____ 4 ;
(3)(-6)- 3 =(-6)+_______;
(4) 1-(+39)= ____ +(-39)。
设计意图:通过学生边口述,边解释法则,学生能找准在将减法变加法的过程中什么变,什么不变。
(四)典例讲解
例4计算:
(1)(-3)-(-5) (2)0-7
(3)7。2-(-4。8) (4)
教师板演示范(1)(4),示范书写过程,学生完成(2)(3)。
设计意图:通过教师的板演,为学生的书写起示范作用,学生练习暴露出来的问题,教师可以及时发现并指正。
思考:在小学,只有当a大于或等于b时,我们才会做a-b,现在,当a小于b时,你会做a-b吗?
一般地,较小的数减去较大的数,所得的差的符号是什么?
通过上述例题,学生不难解答。
(五)当堂检测
1、计算:
(1) 6-9; (2) (+4)-(-7);
(3)(-5)-(-8); (4) 0 -(-5);
(5)(-2。5)-5。9 ; (6) 1。9 -(-0。6)。
2、计算:
(1)比2C 低 8C 的温度;
(2)比 -3C 低 6C 的温度。
3、(20xx·中考)计算:|(-3)-5|=____。
(六)小结
这节课我们学习了哪些知识?你还学到了什么?你能说一说吗?
学生自主谈收获,其他同学补充,教师可给与必要总结。
设计说明:小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生自己总结,谈收获,培养学生善于进行学习反思的良好习惯。
(七)作业布置
必做题:
习题1.3第3题(1)(2)(5)(9)(10)第4题(1)(5)
选做题:
已知a=8,b=-5,c=-6,求(c-a)-|b|的值。
设计说明:根据课标和本节课的教学目标的要求,学生要会运用有理数的减法法则进行运算。我将作业分成选做和必做两个层次,这样尽量能让每个同学在今天的学习中都有所收获。
(八)板书设计
1.3.2有理数的减法
1、有理数的减法法则
2、两个变化要素
相反数
3、转化思想
设计意图:本节课的板书我主要采用提纲式的板书,既直观形象,又能加深理解记忆。
以上是我对本节课的见解,还请各位老师多多指导。
第1章 有理数
第1课时
1.1 正数和负数(1)
教学目标:
1、知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。
2、过程与方法:教法主要采用启发式教学,学法引导学生自主探索去观察、交流、归纳.
3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透(中华人民共和国产品质量法)
教学重点:
了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。 教学难点:
学习负数的必要性,能准确地举出具有相反意义的量的典型例子。
教学准备:彩色粉笔
教学过程:
一、复习引入:
1.你看过电视或听过广播中的天气预报吗?记录温度时所示的气温25ºC,10ºC,零下10ºC,零下30ºC。为书写方便,将测量气温写成25,10,―10,―30。
2.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?
在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,„;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。
二、讲授新课:
1.相反意义的量:
在日常生活中,常会遇到这样一些量(事情):
例1:汽车向东行驶3千米和向西行驶2千米。例2:温度是零上10℃和零下5℃。
例3:收入500元和支出237元。 例4:水位升高1.2米和下降0.7米。 ①试着让学生考虑这些例子中出现的每一对量,有什么共同特点?(具有相反意义。向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义)
②你能举出几对日常生活中具有相反意义的量吗?
2.正数和负数:
①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?
拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用―5℃来表示。
②怎样表示具有相反意义的量呢?能否从天气预报出现的标记中,得到一些启发呢?例1中,我们如果规定向东为正,那么向西为负。汽车向东行驶3千米记作3千米,向西行驶2千米应记作―2千米。
后面的例子让学生来说(注意词的'表达)。
在以上的讨论中,出现了哪些新数?
为了表示具有相反意义的量,上面我们引进了―5,―2,―237,―0.7等数。像这样的一些新数,叫做负数。过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数。正数前面有时也可放一个“+”(读作“正”),如5可以写成+5。
注意:零既不是正数,也不是负数。
1.1 正数和负数(2)
教学目标:
1、知识与技能:在了解正负数的概念的基础上,使学生灵活运用正负数的来表示相反意义量
2、过程与方法:通过用正负数的来表示相反意义量的教学,培养学生观察、比较和概括的思维能力.教法主要采用启发式教学
3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,学会交流
教学重点:
深化对正负数概念的理解
教学难点:
正确理解和表示向指定方向变化的量
教学准备:彩色粉笔
教学过程:
一、复习引入:
上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢? 问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,
就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数²
二、讲解新课
把0以外的数分为正数和负数,它们表示具有相反意义的量。随着对正数、负数意义认识的加深,正数和负数在实践中得到了广泛的应用。在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0米),通常用正数表示高于海平面的某地的海拔高
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)
三、课堂练习课本 P4练习1,2,3,4
四、课时小结
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示. 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业 教科书P5: 2、4
板书设计:
.2.1 有理数
教学目标:
1、知识与技能:使学生理解整数、分数、有理数的概念。并会判断一个给定的数是整数或分数或有理数,会对有理数进行分类,培养学生观察、比较和概括的思维能力
2、过程与方法:从直观认识到理性认识、从而建立有理数概念。通过学习有理数概念,体会对应的思想,数分类的思想教法,主要采用启发式教学。
3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神, 教学重点:
了解有理数包括哪些数。
教学难点:
要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学准备:彩色粉笔
教学过程:
一、复习引入:
1.填空:
①正常水位为0m,水位高于正常水位0.2m 记作 ,低于正常水位0.3m记作 。 ②乒乓球比标准重量重0.039g记作 ,比标准重量轻0.019g记作 ,标准重量记作 。
2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m记作4m,向西运动8m记作 ;如果―7m表示物体向西运动7m,那么6m表明物体怎样运动?(1+0.2;–0.3;+0.039;–0.019;2.–8m;向东运动6m)
二、讲授新课:
1.数的扩充:
数1,2,3,4,„叫做正整数;―1,―2,―3,―4,„叫做负整数;正整数、负整数和零统称为整数;数2,1,84,+5.6,„叫做正分数;―7,―6,―3.5,„叫做负分数;34597
正分数和负分数统称为分数;整数和分数统称为有理数。
2.思考并回答下列问题:
①“0”是整数吗?是正数吗?是有理数吗?
②“―2”是整数吗?是正数吗?是有理数吗?
③自然数就是整数吗?是正数吗?是有理数吗?
要求学生区分“正”与“整”;小数可化为分数。
3.有理数的分类
不同的分类标准可以将有理数进行不同的分类:
①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:
正整数正整数正有理数整数0正分数负整数有理数有理数0负有理数负整数分数正分数
负分数 负分数
②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如上分类表:(注:①“0”也是自然数。②“0”的特殊性。)
4、把一些数放在一起,就组成一个数的集合,简称数集(set of number)。所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。
★
★
★
★
★
★
★
★
★
★